The word problem for certain Hecke-Kiselman monoids

Victoria LEBED, University of Caen Normandy (France)

Caen, January 2023

1 Summary

Linear Hecke–Kiselman monoids L_n (of type A_n):

- generators x_i , $1 \leq i \leq n$;
- relations

$$\begin{aligned} x_i^2 &= x_i, & 1 \leqslant i \leqslant n, \\ x_i x_j &= x_j x_i, & 1 < i - j < n, \\ x_i x_{i+1} x_i &= x_{i+1} x_i x_{i+1} = x_i x_{i+1}, & 1 \leqslant i < n, \\ & \bullet \longrightarrow \bullet & \bullet & \bullet \\ 1 & 2 & 3 & \cdots & \bullet & \bullet \\ \end{aligned}$$

Part 1: We will see that:
(1) they are interesting;
(2) one knows a lot about them.

Part 2: Same for circular Hecke–Kiselman monoids C_n (of type \widetilde{A}_n).

2 Why these relations?

Positive braid monoids B_{n+1}^+ :

• generators $x_i, \ 1 \leqslant i \leqslant n$

$$x_i \leftrightarrow | | \overset{i\,i+1}{\underset{}{\times}} \overset{n+1}{\underset{}{\times}} \overset{n+1}{\underset{}{\times}}$$

relations

$$x_{i}x_{j} = x_{j}x_{i}, \qquad 1 < i - j < n,$$

$$x_{i}x_{i+1}x_{i} = x_{i+1}x_{i}x_{i+1}, \qquad 1 \leq i < n.$$

$$x_{1}x_{2}x_{1} = x_{2}x_{1}x_{2} \iff \bigvee \qquad \bigvee \qquad \bigvee \qquad (\text{Reidemeister III} \text{move})$$

2 Why these relations?

Positive braid monoids B_{n+1}^+ :

- $\bullet \,\, \text{generators} \, x_i, \, 1 \leqslant i \leqslant n$
- relations

$$\begin{aligned} x_i x_j &= x_j x_i, & 1 < i - \\ x_i x_{i+1} x_i &= x_{i+1} x_i x_{i+1}, & 1 \leq i < \end{aligned}$$

j < n, n.

Finite quotients?

(A)
$$x_i^2 = 1$$
: symmetric group S_{n+1} ;

(B) $x_i^2 = x_i$: 0-Hecke monoids;

 $(C) x_i^2 = 0$ (with an additional generator 0): nil-Hecke monoids;

(D) monoid algebra + general quadratic relation: Hecke algebra.

Why finite? Bigon killing!

Bigon killing

2 Why these relations?

Linear Hecke–Kiselman monoids L_n (*Ganyushkin–Mazorchuk '02*):

- $\bullet \,\, \text{generators} \,\, x_i, \,\, 1 \leqslant i \leqslant n$
- relations
 - $$\begin{split} & x_i^2 = x_i, & 1 \leqslant i \leqslant n, \\ & x_i x_j = x_j x_i, & 1 < i j < n, \\ & x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1} = x_i x_{i+1}, & 1 \leqslant i < n. \end{split}$$

Also appear in:

• computer simulations (discrete sequential dynamical system,

Collina-D'Andrea '15)

$$\begin{array}{cccc} \bullet \longrightarrow \bullet \longrightarrow \bullet \\ 1 & 2 & 3 \end{array} & \begin{array}{cccc} \cdots & \longrightarrow \bullet \\ n \\ \end{array}$$

 representations of path algebras of quivers (projection functors, Grensing-Mazorchuk, '12-'17). 3 Yang-Baxter-like representations

$$x_i \leftrightarrow | | \overset{ii+1}{\succ} | \overset{n+1}{\mid}$$

Definition: L_n-chain on A = idempotent maps $\sigma_i \colon A^2 \to A^2$ satisfying

$$\begin{split} (\sigma_{\mathfrak{i}}\times\mathrm{Id})(\mathrm{Id}\times\sigma_{\mathfrak{i}+1})(\sigma_{\mathfrak{i}}\times\mathrm{Id}) &= (\mathrm{Id}\times\sigma_{\mathfrak{i}+1})(\sigma_{\mathfrak{i}}\times\mathrm{Id})(\mathrm{Id}\times\sigma_{\mathfrak{i}+1}) \\ &= (\sigma_{\mathfrak{i}}\times\mathrm{Id})(\mathrm{Id}\times\sigma_{\mathfrak{i}+1}) \qquad \text{on } A^3. \end{split}$$

Proposition: L_n acts on A^{n+1} by $x_i \mapsto \mathrm{Id}^{i-1} \times \sigma_i \times \mathrm{Id}^{n-i}$.

Remark: All $\sigma_i = \sigma \rightarrow$ idempotent Kiselman Yang-Baxter operator.

Examples:

- $\sigma_i(a,b) = (a,p_i(b))$, with $p_i^2 = p_i$.
- $\sigma_i(a,b) = (a,f_i(a)).$

X3X Yang–Baxter-like representations

Examples:

- $\sigma_i(a,b) = (a,p_i(b))$, with $p_i^2 = p_i$.
- $\sigma_i(a,b) = (a,f_i(a)).$

 $\begin{array}{c} \mbox{Particular case: } \sigma_i(a,b) = (a,a) \mbox{ recovers} \\ L_n & \stackrel{1:1}{\longleftrightarrow} & {\rm Cat}_{n+1} \mbox{ (Catalan monoid)} \end{array}$

X3X Yang–Baxter-like representations

Examples:

- $\bullet \ \sigma_i(a,b)=(a,p_i(b)), \text{ with } p_i^2=p_i.$
- $\sigma_i(a,b) = (a,f_i(a)).$
- + $\sigma_i(a,b)=(1,f_i(a)b),$ with A a monoid, and f_i monoid homomorphisms.
- $\sigma_i(a,b) = (a, a * b)$, with * associative and absorbing:

a * (a * b) = a * b.

1 size;

2 word problem;

3 normal form.

Wehs

Theorem (folklore): There are explicit bijections between:

- (A) the elements of L_n ;
- (B) n-webs (weakly entangled braids):

bigons-less and triangle-less positive braids on n + 1 strands;

Proof idea for $(A) \rightarrow (B)$: $x_i^2 = x_i$ bigon killing

$$x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1} = x_i x_{i+1}$$

triangle killing

Subtlety: different killing schemes.

Corollary: rewriting procedure.

Theorem (folklore): There are explicit bijections between:

- (A) the elements of L_n ;
- (B) bigons-less and triangle-less positive braids on n + 1 strands;
- \bigcirc increasing couples of increasing integer sequences between 1 and n + 1:

6 II-sequences

Theorem (folklore): There are explicit bijections between:

B bigons-less and triangle-less positive braids on n + 1 strands;
 increasing couples of increasing integer sequences between 1 and n + 1:

Proof idea for $(C) \rightarrow (B)$: draw the right strands and complete.

Permutations

Theorem (folklore): There are explicit bijections between:

- (B) bigons-less and triangle-less positive braids on n + 1 strands;
- \bigcirc 321-avoiding permutations from S_{n+1} .

Example:

 \land Answers for L_n

Theorem (folklore): There are explicit bijections between:

- (A) the elements of L_n ;
- (B) bigons-less and triangle-less positive braids on n + 1 strands;
- \bigcirc increasing couples of increasing integer sequences between 1 and n + 1;
- (D) 321-avoiding permutations from S_{n+1} .

Proof idea for $(A) \to (C)$: use the L_n -chain $\sigma_i(a, b) = (a, a)$. Corollaries:

1 size: Catalans $C_{n+1} = \frac{1}{n+2} {\binom{2n+2}{n+1}}$ (byproduct: their exotic avatars);

- 2 word problem: a linear solution $(A) \rightarrow (C)$;
- 3 a quadratic normal form: $(A) \to (C) \to (B) \to (A)$ or $(A) \to (C) \to (D) \xrightarrow[process]{inductive} (A)$.

9 Big brother

Circular Hecke–Kiselman monoids C_n (of type \widetilde{A}_n), $n \ge 3$:

- generators x_i , $1 \leqslant i \leqslant n$;
- relations

$$x_i^2 = x_i, \qquad \qquad 1 \leqslant i \leqslant n,$$

$$x_i x_j = x_j x_i, \qquad \qquad 1 < i - j < n - 1,$$

 $1 \leq i < n+1$,

$$x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1} = x_i x_{i+1},$$

where x_{n+1} means x_1 .

 $\times 10$ What was known for C_n

1 size: infinite;

2 word problem: two versions of the same solution:

- a finite Gröbner basis (Męcel-Okniński '19);
- confluent reductions (Aragona-D'Andrea '20);

3 a complicated normal form for almost all elements (*Okniński-Wiertel* '20).

Application: the algebra $K[C_n]$ is Noetherian.

X11X Yang-Baxter-like representations

 $\begin{array}{l} \textbf{Definition: } \mathrm{C_n\text{-}chain on } A = \text{idempotent maps } \sigma_i \colon A^2 \to A^2 \text{ satisfying} \\ (\sigma_i \times \mathrm{Id})(\mathrm{Id} \times \sigma_{i+1})(\sigma_i \times \mathrm{Id}) = (\mathrm{Id} \times \sigma_{i+1})(\sigma_i \times \mathrm{Id})(\mathrm{Id} \times \sigma_{i+1}) \\ = (\sigma_i \times \mathrm{Id})(\mathrm{Id} \times \sigma_{i+1}) \quad \text{ on } A^3 \end{array}$

for $1 \leq i \leq n$. As usual, we put $\sigma_{n+1} = \sigma_1$.

 $\begin{array}{ll} \mbox{Proposition: } \mathrm{C}_n \mbox{ acts on } A^n \mbox{ by } & \\ & x_i \mapsto \mathrm{Id}^{i-1} \times \sigma_i \times \mathrm{Id}^{n-i} & \quad \mbox{ for all } i < n, \\ & x_n \mapsto \theta^{-1}(\sigma_n \times \mathrm{Id}^{n-2})\theta, \end{array}$

where θ is the permutation moving the last component to the beginning.

Examples: The same as for L_n . For instance, $\sigma_i(a, b) = (a, f_i(a))$.

Particular case: $\sigma_i(a, b) = (a, a)$, i < n, and $\sigma_n(a, b) = (a, a + 1)$ (*Aragona–D'Andrea '13*).

12/Webs on a cylinder

Theorem (*L.* '21): There are explicit bijections between:

(A) the elements of C_n ;

 (\underline{B}) \tilde{n} -webs (weakly entangled braids): positive n-strand braids on a cylinder

• without contractible bigons and triangles

• and compositions of elementary diagrams:

$$\mathbf{d}_2 = \begin{bmatrix} & & \\ 1 & & \\ 2 & & 3 \end{bmatrix}$$

Theorem (1, '21): There are explicit bijections between (1, 2, 2, 3)

Theorem (*L.* '21): There are explicit bijections between:

Webs on a cylinder

(A) the elements of C_n ;

 (\underline{B}) \tilde{n} -webs (weakly entangled braids): positive n-strand braids on a cylinder

- without contractible bigons and triangles
- and composed from elementary diagrams:

$$\mathbf{d}_2 = \begin{bmatrix} & & \\ 1 & & \\ 1 & & 2 & 3 \end{bmatrix} \begin{bmatrix} & & \\ 4 & & \end{bmatrix}$$

Examples:

Remark: The d_i and t generate the braid monoid/group on the cylinder.

12 Webs on a cylinder

Theorem (*L.* '21): There are explicit bijections between:

(A) the elements of C_n ;

 ${}^{\textcircled{B}}$ ${}^{\H{n}}$ -webs (weakly entangled braids): positive ${}^{\r{n}}$ -strand braids on a cylinder

- without contractible bigons and triangles
- and composed from elementary diagrams.

Proof idea for $(A) \rightarrow (B)$: Kill all contractible bigons and triangles.

Subtlety: different killing schemes.

Corollary: rewriting procedure.

Theorem (*L. '21*): There are explicit bijections between:

(B) \tilde{n} -webs on a cylinder;

(C) n-close increasing couples of increasing integer sequences:

Proof idea for $(B) \rightarrow (C)$: follow the right strands.

Proposition: For an \tilde{n} -diagram, the following are equivalent:

- 1. no contractible bigons, no contractible triangles;
- 2. no minimal contractible bigons, no minimal contractible triangles;
- 3. up to isotopy, each strand is right, left or vertical.

Theorem (*L. '21*): There are explicit bijections between:

(B) \tilde{n} -webs (weakly entangled braids) on a cylinder;

C n-close increasing couples of increasing integer sequences:

Proof idea for $(B) \rightarrow (C)$: follow the right strands, and encode permutation + winding info:

strand $a \rightarrow b$ goes around the cylinder w times $\rightarrow a < b + w * n$.

(B) \tilde{n} -webs on a cylinder;

C n-close increasing couples of increasing integer sequences:

13 II-sequences

Theorem (*L.* **'21)**: There are explicit bijections between: (B) \tilde{n} -webs on a cylinder;

C n-close increasing couples of increasing integer sequences:

Proof idea for $(B) \rightarrow (C)$: follow the right strands, and encode permutation + winding info:

strand $a \rightarrow b$ goes around the cylinder w times $\rightarrow a < b + w * n$. **Proof idea** for $(C) \rightarrow (B)$:

- 1. decode the permutation + winding info: Euclidean division;
- 2. draw the right strands (on the universal cover of the cylinder);
- 3. complete by the left strands and the vertical strands,use: the right winding nb = the left winding nb.

Answers for C_n

Theorem (*L.* '21): There are explicit bijections between:

- (A) the elements of C_n ;
- $\textcircled{B}\tilde{n}\text{-webs};$

 \bigcirc n-close increasing couples of increasing integer sequences.

Proof idea for $(A) \to (C)$: use the C_n -chain $\sigma_i(a, b) = (a, a)$ for i < n, and $\sigma_n(a, b) = (a, a + n)$.

Example: $x_4 x_3 x_1 x_4 x_2 x_1 x_3 x_2 x_4 x_3 \in C_4.$ (1,2,3,4) $\stackrel{x_3}{\mapsto}$ (1,2,3,3) $\stackrel{x_4}{\mapsto}$ (7,2,3,3) $\stackrel{x_2}{\mapsto}$ (7,2,2,3) $\stackrel{x_3}{\mapsto}$ (7,2,2,2) $\stackrel{x_1}{\mapsto}$ (7,7,2,2) $\stackrel{x_2}{\mapsto}$ (7,7,7,2) $\stackrel{x_4}{\mapsto}$ (6,7,7,2) $\stackrel{x_1}{\mapsto}$ (6,6,7,2) $\stackrel{x_3}{\mapsto}$ (6,6,7,7) $\stackrel{x_4}{\mapsto}$ (11,6,7,7)

Modulo 4: (3, 2, 3, 3);right strands: $2 \rightarrow 2$ and $3 \rightarrow 1$.Twists: $(1, 2, 3, 4) \mapsto (11, 6, 7, 7)$;6 = 2 + 1 * 4, 11 = 3 + 2 * 4.Sequences: 6 = 2 + 1 * 4, 9 = 1 + 2 * 4. \bigvee 2 = 6 = 2 + 1 = 2 + 1 = 3 + 2 = 4.

Theorem (*L.* **'21):** There are explicit bijections between:

•

 \times 14 Answers for C_n

- A the elements of C_n ;
- (B) \tilde{n} -webs;

 \bigcirc n-close increasing couples of increasing integer sequences.

Corollaries:

2 word problem: a linear solution $(A) \rightarrow (C)$;

3 a quadratic normal form: $(A) \rightarrow (C) \rightarrow (B) \rightarrow (A)$

or
$$(A) \to (C) \stackrel{\text{inductive}}{\to} (A)$$

15 Generalisations?

Problems:

- no diagrammatic interpretation for general graphs;
- for a generically oriented chain, different webs may represent equivalent words.

