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1 Summary

Linear Hecke–Kiselman monoids Ln (of type An):
• generators xi, 1 ⩽ i ⩽ n;
• relations

x2i = xi, 1 ⩽ i ⩽ n,

xixj = xjxi, 1 < i− j < n,

xixi+1xi = xi+1xixi+1 = xixi+1, 1 ⩽ i < n.

1
•

2
•

3
• ...

n
•

Part 1: We will see that:
1 they are interesting;
2 one knows a lot about them.

Part 2: Same for circular Hecke–Kiselman monoids Cn (of type Ãn).
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2 Why these relations?

Positive braid monoids B+
n+1:

• generators xi, 1 ⩽ i ⩽ n

i i+1 n+1

xi ↔

• relations
xixj = xjxi, 1 < i− j < n,

xixi+1xi = xi+1xixi+1, 1 ⩽ i < n.

x1x2x1 = x2x1x2 ↔ = (Reidemeister III
move)



2 Why these relations?

Positive braid monoids B+
n+1:

• generators xi, 1 ⩽ i ⩽ n

• relations
xixj = xjxi, 1 < i− j < n,

xixi+1xi = xi+1xixi+1, 1 ⩽ i < n.

Finite quotients?

A x2i = 1: symmetric group Sn+1;

B x2i = xi: 0-Hecke monoids;

C x2i = 0 (with an additional generator 0): nil-Hecke monoids;

D monoid algebra + general quadratic relation: Hecke algebra.

Why finite? Bigon killing!



Bigon killing



2 Why these relations?

Linear Hecke–Kiselman monoids Ln (Ganyushkin–Mazorchuk ’02):

• generators xi, 1 ⩽ i ⩽ n

• relations
x2i = xi, 1 ⩽ i ⩽ n,

xixj = xjxi, 1 < i− j < n,

xixi+1xi = xi+1xixi+1 = xixi+1, 1 ⩽ i < n.

Positive braid monoids B+
n+1 0-Hecke monoids + Kiselman monoids.

(convexity theory)
Also appear in:

• computer simulations (discrete sequential dynamical system,
Collina–D’Andrea ’15)
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• representations of path algebras of quivers (projection functors,
Grensing–Mazorchuk, ’12-’17).



3 Yang–Baxter-like representations

i i+1 n+1

xi ↔

Definition: Ln-chain on A = idempotent maps σi : A
2 → A2 satisfying

(σi × Id)(Id×σi+1)(σi × Id) = (Id×σi+1)(σi × Id)(Id×σi+1)

= (σi × Id)(Id×σi+1) on A3.

Proposition: Ln acts on An+1 by
xi 7→ Idi−1×σi × Idn−i .

Remark: All σi = σ idempotent Kiselman Yang–Baxter operator.

Examples:

• σi(a, b) = (a, pi(b)), with p2
i = pi.

• σi(a, b) = (a, fi(a)).



3 Yang–Baxter-like representations

Examples:

• σi(a, b) = (a, pi(b)), with p2
i = pi.

• σi(a, b) = (a, fi(a)).

Particular case: σi(a, b) = (a, a) recovers

Ln
1:1↔ Catn+1 (Catalan monoid)

1 1 1 3 5

1 2 3 4 5



3 Yang–Baxter-like representations

Examples:

• σi(a, b) = (a, pi(b)), with p2
i = pi.

• σi(a, b) = (a, fi(a)).

• σi(a, b) = (1, fi(a)b), withA a monoid, and fi monoid homomorphisms.

• σi(a, b) = (a, a ∗ b), with ∗ associative and absorbing:
a ∗ (a ∗ b) = a ∗ b.



4 Understanding a monoid

1 size;

2 word problem;

3 normal form.



5 Webs

Theorem (folklore): There are explicit bijections between:

A the elements of Ln;

B n-webs (weakly entangled braids):
bigons-less and triangle-less positive braids on n+ 1 strands;

Proof idea for A → B :
x2i = xi bigon killing

xixi+1xi = xi+1xixi+1 = xixi+1 triangle killing

= =

Subtlety: different killing schemes.

Corollary: rewriting procedure.



6 II-sequences

Theorem (folklore): There are explicit bijections between:

A the elements of Ln;

B bigons-less and triangle-less positive braids on n+ 1 strands;

C increasing couples of increasing integer sequences between 1 and n+ 1:

b1 < b2 < . . . < bk ⩽ n+ 1

∨ ∨ . . . ∨

1 ⩽ a1 < a2 < . . . < ak



6 II-sequences

Theorem (folklore): There are explicit bijections between:

B bigons-less and triangle-less positive braids on n+ 1 strands;

C increasing couples of increasing integer sequences between 1 and n+ 1:

b1 < b2 < . . . < bk ⩽ n+ 1

∨ ∨ . . . ∨

1 ⩽ a1 < a2 < . . . < ak

Proof idea for B → C : follow the right strands.

Example:
3 4

1 3

Proof idea for C → B : draw the right strands and complete.



7 Permutations

Theorem (folklore): There are explicit bijections between:

B bigons-less and triangle-less positive braids on n+ 1 strands;

D 321-avoiding permutations from Sn+1.

Example:
2 4 1 3 5

1 2 3 4 5



8 Answers for Ln

Theorem (folklore): There are explicit bijections between:

A the elements of Ln;

B bigons-less and triangle-less positive braids on n+ 1 strands;

C increasing couples of increasing integer sequences between 1 and n+ 1;

D 321-avoiding permutations from Sn+1.

Proof idea for A → C : use the Ln-chain σi(a, b) = (a, a).

Corollaries:

1 size: Catalans Cn+1 = 1
n+2

(
2n+2
n+1

)
(byproduct: their exotic avatars);

2 word problem: a linear solution A → C ;

3 a quadratic normal form: A → C → B → A

or A → C → D inductive→
process

A .



9 Big brother

Circular Hecke–Kiselman monoids Cn (of type Ãn), n ⩾ 3:
• generators xi, 1 ⩽ i ⩽ n;
• relations

x2i = xi, 1 ⩽ i ⩽ n,

xixj = xjxi, 1 < i− j < n−1,

xixi+1xi = xi+1xixi+1 = xixi+1, 1 ⩽ i < n+1,

where xn+1 means x1.
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10 What was known for Cn

1 size: infinite;

2 word problem: two versions of the same solution:

• a finite Gröbner basis (Mȩcel–Okniński ’19);

• confluent reductions (Aragona–D’Andrea ’20);

3 a complicated normal form for almost all elements (Okniński–Wiertel
’20).

Application: the algebra K [Cn] is Noetherian.



11 Yang–Baxter-like representations

Definition: Cn-chain on A = idempotent maps σi : A
2 → A2 satisfying

(σi × Id)(Id×σi+1)(σi × Id) = (Id×σi+1)(σi × Id)(Id×σi+1)

= (σi × Id)(Id×σi+1) on A3

for 1 ⩽ i ⩽ n. As usual, we put σn+1 = σ1.

Proposition: Cn acts on An by
xi 7→ Idi−1×σi × Idn−i for all i < n,

xn 7→ θ−1(σn × Idn−2)θ,

where θ is the permutation moving the last component to the beginning.

Examples: The same as for Ln. For instance, σi(a, b) = (a, fi(a)).

Particular case: σi(a, b) = (a, a), i < n, and σn(a, b) = (a, a+ 1)
(Aragona–D’Andrea ’13).
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12 Webs on a cylinder

Theorem (L. ’21): There are explicit bijections between:

A the elements of Cn;

B ñ-webs (weakly entangled braids): positive n-strand braids on a cylinder

• without contractible bigons and triangles

contractible non-contractible

• and compositions of elementary diagrams:

d2 =
1 2 3 4



12 Webs on a cylinder

Theorem (L. ’21): There are explicit bijections between:

A the elements of Cn;

B ñ-webs (weakly entangled braids): positive n-strand braids on a cylinder
• without contractible bigons and triangles
• and composed from elementary diagrams:

d2 =
1 2 3 4

Examples:

1 2 3 4 5=1

3

1 2 3 4 5=1

t= 7

Remark: The di and t generate the braid monoid/group on the cylinder.



12 Webs on a cylinder

Theorem (L. ’21): There are explicit bijections between:

A the elements of Cn;

B ñ-webs (weakly entangled braids): positive n-strand braids on a cylinder

• without contractible bigons and triangles
• and composed from elementary diagrams.

Proof idea for A → B : Kill all contractible bigons and triangles.

Subtlety: different killing schemes.

Corollary: rewriting procedure.



13 II-sequences

Theorem (L. ’21): There are explicit bijections between:

B ñ-webs on a cylinder;

C n-close increasing couples of increasing integer sequences:

b1 < b2 < . . . < bk < b1 + n

∨ ∨ . . . ∨

1 ⩽ a1 < a2 < . . . < ak ⩽ n

Proof idea for B → C : follow the right strands.

Proposition: For an ñ-diagram, the following are equivalent:

1. no contractible bigons, no contractible triangles;

2. no minimal contractible bigons, no minimal contractible triangles;

3. up to isotopy, each strand is right, left or vertical.



13 II-sequences

Theorem (L. ’21): There are explicit bijections between:

B ñ-webs (weakly entangled braids) on a cylinder;

C n-close increasing couples of increasing integer sequences:

b1 < b2 < . . . < bk < b1 + n

∨ ∨ . . . ∨

1 ⩽ a1 < a2 < . . . < ak ⩽ n

Proof idea for B → C : follow the right strands,
and encode permutation + winding info:

strand a → b goes around the cylinder w times a < b+w ∗ n.



B ñ-webs on a cylinder;

C n-close increasing couples of increasing integer sequences:

b1 < b2 < . . . < bk < b1 + n

∨ ∨ . . . ∨

1 ⩽ a1 < a2 < . . . < ak ⩽ n

Proof idea for B → C : follow the right strands,
and encode permutation + winding info:

strand a → b goes around the cylinder w times a < b+w ∗ n.
Example:

1 2 3 4 5 = 1

1 2 twists
2 1

↑ ↑
2 3

6 < 9

∨ ∨

2 < 3



13 II-sequences

Theorem (L. ’21): There are explicit bijections between:

B ñ-webs on a cylinder;

C n-close increasing couples of increasing integer sequences:

b1 < b2 < . . . < bk < b1 + n

∨ ∨ . . . ∨

1 ⩽ a1 < a2 < . . . < ak ⩽ n

Proof idea for B → C : follow the right strands,
and encode permutation + winding info:

strand a → b goes around the cylinder w times a < b+w ∗ n.

Proof idea for C → B :

1. decode the permutation + winding info: Euclidean division;

2. draw the right strands (on the universal cover of the cylinder);

3. complete by the left strands and the vertical strands,
use: the right winding nb = the left winding nb.



Example:
6 < 9

∨ ∨

2 < 3

6 = 2+ 1 ∗ 4 9 = 1+ 2 ∗ 4

1 2 3 4 1

6 9−1−4

1 2 3 4 1

∑
= 10

∑
= 10



Example:
6 < 9

∨ ∨

2 < 3

6 9−1−4

1 2 3 4 1

∑
= 10

∑
= 10

π in C4:

x4x3x1x4x2x1x3x2x4x3

x = 4.5

1 2 3 4 1



14 Answers for Cn

Theorem (L. ’21): There are explicit bijections between:

A the elements of Cn;

B ñ-webs;

C n-close increasing couples of increasing integer sequences.

Proof idea for A → C : use the Cn-chain σi(a, b) = (a, a) for
i < n, and σn(a, b) = (a, a+ n).

Example: x4x3x1x4x2x1x3x2x4x3 ∈ C4.

(1, 2, 3,4)
x37→ (1, 2, 3, 3)

x47→ (7, 2, 3, 3)
x27→ (7, 2, 2, 3)

x37→ (7, 2, 2, 2)
x17→ (7, 7, 2, 2)

x27→ (7, 7, 7, 2)
x47→ (6, 7, 7, 2)

x17→ (6, 6, 7, 2)
x37→ (6, 6, 7, 7)

x47→ (11, 6, 7, 7)

Modulo 4: (3, 2, 3, 3); right strands: 2 → 2 and 3 → 1.

Twists: (1, 2, 3, 4) 7→ (11, 6, 7, 7); 6 = 2+ 1 ∗ 4, 11 = 3+ 2 ∗ 4.

Sequences: 6 = 2+ 1 ∗ 4, 9 = 1+ 2 ∗ 4.
6 < 9

∨ ∨

2 < 3



14 Answers for Cn

Theorem (L. ’21): There are explicit bijections between:

A the elements of Cn;

B ñ-webs;

C n-close increasing couples of increasing integer sequences.

Corollaries:

2 word problem: a linear solution A → C ;

3 a quadratic normal form: A → C → B → A

or A → C inductive→
process

A .



15 Generalisations?

Problems:
• no diagrammatic interpretation for general graphs;

• for a generically oriented chain, different webs may represent
equivalent words.

Example:
1
•

2
•

3
•

relations: x21 = x1, x
2
2 = x2, x

2
3 = x3, x1x3 = x3x1,

x1x2x1 = x2x1x2 = x2x1, x2x3x2 = x3x2x3 = x2x3

x2x1x3 ∼

≁

x2x1x3x2

x2x1x3x2 = x2x1x2x3x2 = x2x1x2x3 = x2x1x3
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