The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

The Yang-Baxter equation, braces and Thompson's group *F* Algebra Days in Caen 2022: from Yang–Baxter to Garside, Caen 2022

Fabienne Chouraqui

University of Haifa, Campus Oranim

Fabienne Chouraqui The Yang-Baxter equation and Thompson's group F

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

イロト イポト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, r) of the QYBE [Drinfeld]

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $R: V \otimes V \to V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, r) of the QYBE [Drinfeld]

■ *V* is a vector space spanned by a set *X*.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $R: V \otimes V \to V \otimes V$ be a linear operator, where V is a vector space.

The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the *i*-th and *j*-th components.

A set-theoretical solution (X, r) of the QYBE [Drinfeld]

■ *V* is a vector space spanned by a set *X*.

- *R* is the linear operator induced by a mapping 12, 23, 12, 23
 - $r: X \times X \rightarrow X \times X$, that satisfies $r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$.

イロト 不得 トイラト イラト・ラ

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X = \{x_1, ..., x_n\}$ and let r be defined in the following way: $r(i,j) = (\sigma_i(j), \gamma_j(i))$, where $\sigma_i, \gamma_i : X \to X$.

イロト イボト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X = \{x_1, ..., x_n\}$ and let r be defined in the following way: $r(i,j) = (\sigma_i(j), \gamma_j(i))$, where $\sigma_i, \gamma_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

• (X, r) is non-degenerate $\Leftrightarrow \sigma_i$ and γ_i are bijective, $1 \le i \le n$.

イロト 不得 トイラト イラト 二日

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X = \{x_1, ..., x_n\}$ and let r be defined in the following way: $r(i, j) = (\sigma_i(j), \gamma_j(i))$, where $\sigma_i, \gamma_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

• (X, r) is non-degenerate $\Leftrightarrow \sigma_i$ and γ_i are bijective, $1 \le i \le n$.

•
$$(X, r)$$
 is involutive $\Leftrightarrow r^2 = Id_{X^2}$.

イロト イボト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X = \{x_1, ..., x_n\}$ and let r be defined in the following way: $r(i,j) = (\sigma_i(j), \gamma_j(i))$, where $\sigma_i, \gamma_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, r) is non-degenerate $\Leftrightarrow \sigma_i$ and γ_i are bijective, $1 \le i \le n$.
- (X, r) is involutive $\Leftrightarrow r^2 = Id_{X^2}$.
- (X, r) is braided $\Leftrightarrow r^{12}r^{23}r^{12} = r^{23}r^{12}r^{23}$

イロト 不得 トイラト イラト・ラ

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $X = \{x_1, ..., x_n\}$ and let r be defined in the following way: $r(i,j) = (\sigma_i(j), \gamma_j(i))$, where $\sigma_i, \gamma_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

- (X, r) is non-degenerate $\Leftrightarrow \sigma_i$ and γ_i are bijective, $1 \le i \le n$.
- (X, r) is involutive $\Leftrightarrow \sigma_{\sigma_i(j)}\gamma_j(i) = i$ and $\gamma_{\gamma_j(i)}\sigma_i(j) = j$, $1 \le i, j \le n$.
- (X, r) is braided $\Leftrightarrow \sigma_i \sigma_j = \sigma_{\sigma_i(j)} \sigma_{\gamma_j(i)}$ and
 - $\begin{array}{l} \gamma_{j}\gamma_{i}=\gamma_{\gamma_{j}(i)}\gamma_{\sigma_{i}(j)}\\ \text{and } \gamma_{\sigma_{\gamma_{j}(i)}(k)}\sigma_{i}(j)=\sigma_{\gamma_{\sigma_{j}(k)}(i)}\gamma_{k}(j), \ 1\leq i,j,k\leq n. \end{array}$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

イロト イポト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}.$$

イロト イボト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]

• The generators: $X = \{x_1, x_2, ..., x_n\}$.

The defining relations: x_ix_j = x_kx_l whenever
S(i,j) = (k, l)

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

The defining relations: x_ix_j = x_kx_l whenever S(i,j) = (k,l)

There are exactly
$$\frac{n(n-1)}{2}$$
 defining relations.

イロト イポト イヨト イヨト

Example

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Result

Let
$$X = \{x_0, x_1, x_2, x_3\}.$$

$$\begin{aligned} \sigma_0 &= (0)(1)(2,3) & \sigma_1 &= (1,2,0,3) \\ \sigma_2 &= (2)(3)(0,1) & \sigma_3 &= (1,3,0,2) \end{aligned}$$

The solution is indecomposable with defining relations:

$$x_1 x_1 = x_2 x_0 \quad x_1 x_0 = x_3 x_2 x_0 x_3 = x_2 x_1 \quad x_1 x_2 = x_0 x_1 x_2 x_3 = x_3 x_0 \quad x_3^2 = x_0 x_2$$
(2)

・ロト ・回ト ・ヨト ・ヨト

э

Example

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let
$$X = \{x_0, x_1, x_2, x_3\}.$$

$$\begin{aligned} \sigma_0 &= (0)(1)(2,3) & \sigma_1 &= (1,2,0,3) \\ \sigma_2 &= (2)(3)(0,1) & \sigma_3 &= (1,3,0,2) \end{aligned}$$

The solution is indecomposable with defining relations:

$$x_1 x_1 = x_2 x_0 \quad x_1 x_0 = x_3 x_2 x_0 x_3 = x_2 x_1 \quad x_1 x_2 = x_0 x_1 x_2 x_3 = x_3 x_0 \quad x_3^2 = x_0 x_2$$
(2)

イロト イヨト イヨト イヨト

э

The center of G is generated by $\Delta = (x_0 \overline{x_1})^2 = (x_2 x_3)^2$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Definition of an inverse semigroup and an inverse monoid

Fabienne Chouraqui The Yang-Baxter equation and Thompson's group F

イロン 人間 とくほと くほど

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Definition of an inverse semigroup and an inverse monoid

- A regular semigroup is a semigroup S such that for every element $s \in S$ there exists at least one element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.
 - s* is called an inverse of s.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Definition of an inverse semigroup and an inverse monoid

A regular semigroup is a semigroup S such that for every element s ∈ S there exists at least one element s* ∈ S such that ss*s = s and s*ss* = s*.

 s^* is called an inverse of s.

An *inverse semigroup* is a regular semigroup such that every element in *S* has a **unique** inverse.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Definition of an inverse semigroup and an inverse monoid

• A regular semigroup is a semigroup S such that for every element $s \in S$ there exists at least one element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

 s^* is called an inverse of s.

- An *inverse semigroup* is a regular semigroup such that every element in *S* has a **unique** inverse.
- An *inverse monoid* M is an inverse semigroup with multiplicative identity 1.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Definition of an inverse semigroup and an inverse monoid

A regular semigroup is a semigroup S such that for every element s ∈ S there exists at least one element s* ∈ S such that ss*s = s and s*ss* = s*.

 s^* is called an inverse of s.

- An *inverse semigroup* is a regular semigroup such that every element in *S* has a **unique** inverse.
- An *inverse monoid* M is an inverse semigroup with multiplicative identity 1.

An inverse semigroup is a regular semigroup in which all the idempotents commute: the set E(S) of idempotents of an inverse semigroup S is a commutative subsemigroup. E(S) is ordered by $e \le f$ iff ef = e = fe.

ヘロマ 人間マ ヘヨマ ヘヨマ

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Some definitions (X a set)

■ A *partial function* of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by D_f, and R_f respectively.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Some definitions (X a set)

■ A *partial function* of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by D_f, and R_f respectively.

• A partial bijection of X is a bijection $f : \mathcal{D}_f \to \mathcal{R}_f$.

イロト イポト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Some definitions (X a set)

■ A *partial function* of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by D_f, and R_f respectively.

• A partial bijection of X is a bijection $f : \mathcal{D}_f \to \mathcal{R}_f$.

• If $f \neq Id$, \mathcal{D}_f is allowed to be the empty set.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Some definitions (X a set)

■ A *partial function* of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by D_f, and R_f respectively.

• A partial bijection of X is a bijection $f : \mathcal{D}_f \to \mathcal{R}_f$.

• If $f \neq Id$, \mathcal{D}_f is allowed to be the empty set.

In a commutative inverse monoid A generated by a set X:

■ Every element is in corr. with a partial function with finite support f : X → Z, x_i ↦ m_i.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Some definitions (X a set)

■ A *partial function* of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by D_f, and R_f respectively.

• A partial bijection of X is a bijection $f : \mathcal{D}_f \to \mathcal{R}_f$.

• If $f \neq Id$, \mathcal{D}_f is allowed to be the empty set.

In a commutative inverse monoid A generated by a set X:

- Every element is in corr. with a partial function with finite support f : X → Z, x_i ↦ m_i.
- The operation in A is defined pointwise, with (f+g)(x) = f(x) + g(x), where $\mathcal{D}_{f+g} = \mathcal{D}_f \cap \mathcal{D}_g$.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Some definitions (X a set)

■ A *partial function* of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by D_f, and R_f respectively.

• A partial bijection of X is a bijection $f : \mathcal{D}_f \to \mathcal{R}_f$.

• If $f \neq Id$, \mathcal{D}_f is allowed to be the empty set.

In a commutative inverse monoid A generated by a set X:

- Every element is in corr. with a partial function with finite support f : X → Z, x_i ↦ m_i.
- The operation in A is defined pointwise, with (f+g)(x) = f(x) + g(x), where $\mathcal{D}_{f+g} = \mathcal{D}_f \cap \mathcal{D}_g$.
- The identity is 0_X , the zero function on X.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

In a symmetric inverse monoid I_X , X a set :

• Every element is a partial bijection of X.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

In a symmetric inverse monoid I_X , X a set :

• Every element is a partial bijection of X.

The operation is composition of functions ○:
If f, g ∈ I_X, then f ∘ g is the composition of partial maps in the largest domain where it makes sense, that is
D_{f∘g} = g⁻¹(D_f ∩ R_g), and R_{f∘g} = f(D_f ∩ R_g).

イロト イポト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

In a symmetric inverse monoid I_X , X a set :

• Every element is a partial bijection of X.

The operation is composition of functions ○: If f, g ∈ I_X, then f ∘ g is the composition of partial maps in the largest domain where it makes sense, that is D_{f∘g} = g⁻¹(D_f ∩ R_g), and R_{f∘g} = f(D_f ∩ R_g).

• There is a zero element: the vacuous map $\emptyset \to \emptyset$.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

In a symmetric inverse monoid I_X , X a set :

• Every element is a partial bijection of X.

- The operation is composition of functions ○: If f, g ∈ I_X, then f ∘ g is the composition of partial maps in the largest domain where it makes sense, that is D_{f∘g} = g⁻¹(D_f ∩ R_g), and R_{f∘g} = f(D_f ∩ R_g).
- There is a zero element: the vacuous map $\emptyset \to \emptyset$.
- The idempotents of I_X are the partial identities on X.

Operations on inverse monoids

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let S be a semigroup, M be a monoid

M is said to act on *S* (on the left) (by endomorphisms) if there exists a map $M \times S \to S$, denoted by $(a, s) \mapsto a \bullet s$ satisfying the following conditions:

• for any $a, b \in M$, $s \in S$, $(ab) \bullet s = a \bullet (b \bullet s)$.

• for any
$$a \in M$$
, $s, s' \in S$, $a \bullet (ss') = (a \bullet s)(a \bullet s')$.

• for every
$$s \in S$$
, $1 \bullet s = s$.

Operations on inverse monoids

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let S be a semigroup, M be a monoid

M is said to act on *S* (on the left) (by endomorphisms) if there exists a map $M \times S \rightarrow S$, denoted by $(a, s) \mapsto a \bullet s$ satisfying the following conditions:

• for any $a, b \in M$, $s \in S$, $(ab) \bullet s = a \bullet (b \bullet s)$.

for any
$$a \in M$$
, $s,s' \in S$, $a \bullet (ss') = (a \bullet s)(a \bullet s').$

• for every
$$s \in S$$
, $1 \bullet s = s$.

If S is a semigroup with zero 0, the additional following property is required:

for any
$$a \in M$$
, $a \bullet 0 = 0$.

イロト イポト イヨト イヨト

Operations on inverse monoids

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let S be a semigroup, M be a monoid

M is said to act on *S* (on the left) (by endomorphisms) if there exists a map $M \times S \to S$, denoted by $(a, s) \mapsto a \bullet s$ satisfying the following conditions:

- for any $a, b \in M$, $s \in S$, $(ab) \bullet s = a \bullet (b \bullet s)$.
- for any $a \in M$, $s, s' \in S$, $a \bullet (ss') = (a \bullet s)(a \bullet s')$.
- for every $s \in S$, $1 \bullet s = s$.

If S is a semigroup with zero 0, the additional following property is required:

for any
$$a \in M$$
, $a \bullet 0 = 0$.

Let M act on S (on the left) (by endomorphisms)

The semidirect product $S \rtimes M$ is not an inverse semigroup!!!

The restricted product of inverse semigroups

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let M, S be inverse semigroups. Let E(M) denote the set of idempotents of M (ordered by $e \leq f$ if and only if ef = e = fe). Assume the following assumptions:

- M acts on S by endomorphisms.
- There exists a surjective homomorphism $\epsilon : S \to E(M)$.
- For each $s \in S$, there exists $\epsilon(s) \in E(M)$ such that

$$\epsilon(s) \leq e \Longleftrightarrow e \bullet s = s, \, orall e \in E(M)$$

Let $S \bowtie M$ be the following set with the binary operation defined below:

 $S \bowtie M = \{(s, m) \in S \times M \mid r(m) = \epsilon(s)\}$

$$(s,m)(s',m') = (s(m \bullet s'), mm')$$

 $S \bowtie M$ is an inverse semigroup.

Definition and properties of a partial solution

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

Define $r : \mathcal{D} \to \mathcal{R}$, by $r(x, y) = (\sigma_x(y), \gamma_y(x))$, where $\sigma_x : \mathcal{D}_{\sigma_x} \to \mathcal{R}_{\sigma_x}, \gamma_y : \mathcal{D}_{\gamma_y} \to \mathcal{R}_{\gamma_y}; \mathcal{D}_{\sigma_x}, \mathcal{R}_{\sigma_x}, \mathcal{D}_{\gamma_y}, \mathcal{R}_{\gamma_y} \subseteq X$
The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

Define $r: \mathcal{D} \to \mathcal{R}$, by $r(x, y) = (\sigma_x(y), \gamma_y(x))$, where $\sigma_x: \mathcal{D}_{\sigma_x} \to \mathcal{R}_{\sigma_x}, \gamma_y: \mathcal{D}_{\gamma_y} \to \mathcal{R}_{\gamma_y}; \mathcal{D}_{\sigma_x}, \mathcal{R}_{\sigma_x}, \mathcal{D}_{\gamma_y}, \mathcal{R}_{\gamma_y} \subseteq X$

• $(x,y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_x}$ and $x \in \mathcal{D}_{\gamma_y}$.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

- $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_x}$ and $x \in \mathcal{D}_{\gamma_y}$.
- (X, r) is non-degenerate, if $\forall x, y \in X$, σ_x and γ_y are bijective (i.e. σ_x and γ_y are partial bijections of X).

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

- $(x,y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_x}$ and $x \in \mathcal{D}_{\gamma_y}$.
- (X, r) is non-degenerate, if $\forall x, y \in X$, σ_x and γ_y are bijective (i.e. σ_x and γ_y are partial bijections of X).
- (X, r) is involutive if for all pairs (x, y) ∈ X², x ∈ D_{γy} if and only if y ∈ D_{σx}, and additionally if r(x, y) is defined, then r²(x, y) is also defined and satisfies r² = Id.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

- $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_x}$ and $x \in \mathcal{D}_{\gamma_y}$.
- (X, r) is non-degenerate, if ∀x, y ∈ X, σ_x and γ_y are bijective (i.e. σ_x and γ_y are partial bijections of X).
- (X, r) is involutive if for all pairs (x, y) ∈ X², x ∈ D_{γy} if and only if y ∈ D_{σx}, and additionally if r(x, y) is defined, then r²(x, y) is also defined and satisfies r² = Id.
- (X, r) is braided if $r^{12}r^{23}r^{12}(x, y, z) = r^{23}r^{12}r^{23}(x, y, z)$, $\forall x, y, z \in X$ such that both are defined.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

- $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_x}$ and $x \in \mathcal{D}_{\gamma_y}$.
- (X, r) is non-degenerate, if ∀x, y ∈ X, σ_x and γ_y are bijective (i.e. σ_x and γ_y are partial bijections of X).
- (X, r) is involutive if for all pairs (x, y) ∈ X², x ∈ D_{γy} if and only if y ∈ D_{σx}, and additionally if r(x, y) is defined, then r²(x, y) is also defined and satisfies r² = Id.
- (X, r) is braided if $r^{12}r^{23}r^{12}(x, y, z) = r^{23}r^{12}r^{23}(x, y, z)$, $\forall x, y, z \in X$ such that both are defined.
- (X, r) is square-free, if $\forall x \in X$, $(x, x) \in D$ and r(x, x) = (x, x).

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution, $X = \{x_0, x_1, x_2\}$

 $\mathcal{D} = \mathcal{R} = \{(x_0, x_2), (x_1, x_2), (x_2, x_0), (x_2, x_1), (x_i, x_i), \forall i\}.$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

> > T

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution, $X = \{x_0, x_1, x_2\}$

$$\begin{split} \mathcal{D} &= \mathcal{R} = \{ (x_0, x_2), (x_1, x_2), (x_2, x_0), (x_2, x_1), (x_i, x_i), \forall i \} \\ \mathcal{D}_{\sigma_0} &= \mathcal{D}_{\gamma_0} = \{ 0, 2 \} \qquad \sigma_0 = \gamma_0 = (0)(2) \\ \mathcal{D}_{\sigma_1} &= \mathcal{D}_{\gamma_1} = \{ 1, 2 \} \qquad \sigma_1 = \gamma_1 = (1)(2) \\ \mathcal{D}_{\sigma_2} &= \mathcal{D}_{\gamma_2} = \{ 0, 1, 2 \} \qquad \sigma_2 = \gamma_2 = (0, 1)(2) \end{split}$$

< ロ > < 同 > < 三 > < 三 >

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution, $X = \{x_0, x_1, x_2\}$

$$\begin{aligned} \mathcal{D} &= \mathcal{R} = \{ (x_0, x_2), (x_1, x_2), (x_2, x_0), (x_2, x_1), (x_i, x_i), \forall i \} \\ \mathcal{D}_{\sigma_0} &= \mathcal{D}_{\gamma_0} = \{ 0, 2 \} \qquad \sigma_0 = \gamma_0 = (0)(2) \\ \mathcal{D}_{\sigma_1} &= \mathcal{D}_{\gamma_1} = \{ 1, 2 \} \qquad \sigma_1 = \gamma_1 = (1)(2) \\ \mathcal{D}_{\sigma_2} &= \mathcal{D}_{\gamma_2} = \{ 0, 1, 2 \} \qquad \sigma_2 = \gamma_2 = (0, 1)(2) \\ (X, r) \text{ is a square-free partial solution, with:} \\ r(x_0, x_2) &= (x_2, x_1) \qquad r(x_2, x_1) = (x_0, x_2) \\ r(x_1, x_2) &= (x_2, x_0) \qquad r(x_2, x_0) = (x_1, x_2) \end{aligned}$$

The structure inverse monoid of a partial solution

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let (X, r) be a partial set-theoretic solution.

• The structure group of
$$(X, r)$$
 is
 $G(X, r) = \operatorname{Gp}(X \mid xy = \sigma_x(y)\gamma_y(x); (x, y) \in \mathcal{D}).$

・ロト ・回ト ・ヨト ・ヨト

The structure inverse monoid of a partial solution

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let (X, r) be a partial set-theoretic solution.

- The structure group of (X, r) is $G(X, r) = \operatorname{Gp}\langle X \mid xy = \sigma_x(y)\gamma_y(x) ; (x, y) \in \mathcal{D} \rangle.$
- The structure inverse monoid of (X, r) is $IM(X, r) = Inv\langle X \mid xy = \sigma_x(y)\gamma_y(x); (x, y) \in \mathcal{D} \rangle.$

The structure inverse monoid of a partial solution

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let (X, r) be a partial set-theoretic solution.

- The structure group of (X, r) is $G(X, r) = \operatorname{Gp}\langle X \mid xy = \sigma_x(y)\gamma_y(x) ; (x, y) \in \mathcal{D} \rangle.$
- The structure inverse monoid of (X, r) is $IM(X, r) = Inv\langle X \mid xy = \sigma_x(y)\gamma_y(x); (x, y) \in \mathcal{D} \rangle.$

The structure group of a trivial partial solution is a partially commutative group (or a right-angled Artin group)

A partial solution (X, r) is *trivial* if for every $x \in X$, $\sigma_x = Id_{\mathcal{D}_{\sigma_x}}, \ \gamma_x = Id_{\mathcal{D}_{\gamma_x}}.$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let (X, r) be a partial set-theoretic solution.

 I_X : the symmetric inverse monoid.

A: the commutative inverse monoid (partial $f: X \to \mathbb{Z}$, finite support).

Let $\tau \in I_X$ and $f \in A$, $f : X \to \mathbb{Z}$ a partial function

 I_X acts (totally) on A by endomorphisms: $\tau \bullet f = f \circ \tau^{-1}$

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $x \in X$, $g, h \in IM(X, r)$, $f \in A$:

1 The following map is a homomorphism of monoids:

 $\alpha: \mathsf{IM}(X, r) \to \mathsf{I}_X \quad x \mapsto \sigma_x$

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $x \in X$, $g, h \in IM(X, r)$, $f \in A$:

1 The following map is a homomorphism of monoids:

$$lpha: \mathsf{IM}(X, r) o \mathsf{I}_X \quad x \mapsto \sigma_x$$

2 There is an action of IM(X, r) on itself by endomorphisms:

$$g \bullet x_j = x_{\sigma_g(j)}$$
$$g \bullet h = g \bullet x_{j_1} \dots x_{j_k} = x_{\sigma_g(j_1)} \dots x_{\sigma_g(j_k)}$$

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $x \in X$, $g, h \in IM(X, r)$, $f \in A$:

1 The following map is a homomorphism of monoids:

$$lpha: \mathsf{IM}(X, r) o \mathsf{I}_X \quad x \mapsto \sigma_x$$

2 There is an action of IM(X, r) on itself by endomorphisms:

$$g \bullet x_j = x_{\sigma_g(j)}$$
$$g \bullet h = g \bullet x_{j_1} \dots x_{j_k} = x_{\sigma_g(j_1)} \dots x_{\sigma_g(j_k)}$$

3 There is an action of IM(X, r) on A by endomorphisms:

$$\underline{g \bullet f} = \sigma_{\underline{g}} \bullet f = f \circ \sigma_{\sigma}^{-1}$$

Fabienne Chouraqui

The Yang-Baxter equation and Thompson's group F

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Theorem 1 [F.C]

$$\pi : \mathsf{IM}(X, r) \to A$$

 $x_i \mapsto \delta_i$
 $f(gh) = \pi(g) + g \bullet \pi(h)$

is an injective map.

π

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F 2nd Result

Theorem 1 [F.C]

$$\pi: \mathsf{IM}(X, r) o A$$

 $x_i \mapsto \delta_i$
 $\pi(gh) = \pi(g) + g \bullet \pi(h)$

is an injective map.

π

The map $\delta_x : \mathcal{D}_{\delta_x} \to \mathbb{Z}$, with $\mathcal{D}_{\delta_x} = \mathcal{R}_{\sigma_x} \subseteq X$ is defined by:

$$\delta_x(y) = \left\{ egin{array}{cc} 1 & y = x \ 0 & y \in \mathcal{R}_{\sigma_x}, \ y
eq x \end{array}
ight.$$

A D D A D D A D D A D D A

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F 2nd Result

Theorem 1 [F.C]

$$\pi : \mathsf{IM}(X, r) \to A$$

 $x_i \mapsto \delta_i$
 $f(gh) = \pi(g) + g \bullet \pi(h)$

is an injective map.

π

The map $\delta_x : \mathcal{D}_{\delta_x} \to \mathbb{Z}$, with $\mathcal{D}_{\delta_x} = \mathcal{R}_{\sigma_x} \subseteq X$ is defined by:

$$\delta_x(y) = \left\{ egin{array}{cc} 1 & y = x \ 0 & y \in \mathcal{R}_{\sigma_x}, \ y
eq x \end{array}
ight.$$

Furthermore, $\delta_x(y)$ is not defined for $y \in X \setminus \mathcal{R}_{\sigma_x}$.

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Theorem 2 [F.C] The restricted product $A \bowtie I_X$ is defined by:

$$A \bowtie \mathsf{I}_X = \{(f, \tau) \in A \times \mathsf{I}_X \mid \mathcal{R}_\tau = \mathcal{D}_f\}$$
$$(f, \tau)(f', \nu) = (f + (\tau \bullet f'), \tau \nu)$$

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F **Theorem 2 [F.C]** The restricted product $A \bowtie I_X$ is defined by:

$$A \bowtie \mathsf{I}_X = \{(f, \tau) \in A \times \mathsf{I}_X \mid \mathcal{R}_\tau = \mathcal{D}_f\}$$
$$(f, \tau)(f', \nu) = (f + (\tau \bullet f'), \tau \nu)$$

Theorem 3 [F.C]

Let (X, r) be a square-free partial solution, with IM(X, r).

$$\psi: \mathsf{IM}(X, r) \to A \bowtie \mathsf{I}_X$$
$$\psi(x) = (\delta_x, \sigma_x); \ \psi(g) = (\pi(g), \sigma_g)$$

イロト イヨト イヨト イヨト

э

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F 2nd Result **Theorem 2 [F.C]** The restricted product $A \bowtie I_X$ is defined by:

$$A \bowtie \mathsf{I}_X = \{(f, \tau) \in A \times \mathsf{I}_X \mid \mathcal{R}_\tau = \mathcal{D}_f\}$$
$$(f, \tau)(f', \nu) = (f + (\tau \bullet f'), \tau \nu)$$

Theorem 3 [F.C]

Let (X, r) be a square-free partial solution, with IM(X, r).

$$\psi : \mathsf{IM}(X, r) \to A \bowtie \mathsf{I}_X$$
$$\psi(x) = (\delta_x, \sigma_x); \ \psi(g) = (\pi(g), \sigma_g)$$

is an injective homomorphism of monoids.

イロト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F 2nd Result **Theorem 2 [F.C]** The restricted product $A \bowtie I_X$ is defined by:

$$A \bowtie \mathsf{I}_X = \{(f, \tau) \in A \times \mathsf{I}_X \mid \mathcal{R}_\tau = \mathcal{D}_f\}$$
$$(f, \tau)(f', \nu) = (f + (\tau \bullet f'), \tau \nu)$$

Theorem 3 [F.C]

Let (X, r) be a square-free partial solution, with IM(X, r).

$$\psi : \mathsf{IM}(X, r) \to A \bowtie \mathsf{I}_X$$

 $\psi(x) = (\delta_x, \sigma_x); \ \psi(g) = (\pi(g), \sigma_g)$

is an injective homomorphism of monoids. Furthermore, $Im(\psi)$ is an inverse monoid.

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Any subdivision of the interval [0,1] obtained by repeatedly cutting intervals in half is called *a dyadic subdivision*.

э

The Yang-Baxter equation and Thompson's group F

n

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

1/2 1

Any subdivision of the interval [0,1] obtained by repeatedly cutting intervals in half is called *a dyadic subdivision*.

イロト イポト イヨト イヨト

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Any subdivision of the interval [0,1] obtained by repeatedly cutting intervals in half is called *a dyadic subdivision*.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Any subdivision of the interval [0,1] obtained by repeatedly cutting intervals in half is called *a dyadic subdivision*.

To each dyadic interval there corresponds a binary tree:

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Any subdivision of the interval [0,1] obtained by repeatedly cutting intervals in half is called *a dyadic subdivision*.

To each dyadic interval there corresponds a binary tree:

Introduction to Thomson group F(1)

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Given \mathcal{D} , \mathcal{R} , with the same number of cuts, a *dyadic* rearrangement of [0,1] is a picewise-linear $f : [0,1] \rightarrow [0,1]$ that sends each interval of \mathcal{D} linearly onto the corresponding interval of \mathcal{R} . The set of all dyadic rearrangements forms a group under composition: the Thompson group F.

イロト イポト イヨト イヨト

Introduction to Thomson group F(1)

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Given \mathcal{D} , \mathcal{R} , with the same number of cuts, a *dyadic* rearrangement of [0, 1] is a picewise-linear $f : [0, 1] \rightarrow [0, 1]$ that sends each interval of \mathcal{D} linearly onto the corresponding interval of \mathcal{R} . The set of all dyadic rearrangements forms a group under composition: the Thompson group F.

Dyadic rearrangements for x_0 at left and x_1 at right

Fabienne Chouraqui The Yang-Baxter equation and Thompson's group F

Introduction to Thomson group F(2)

Introduction to Thomson group F(2)

Introduction to Thomson group F 3

Introduction to Thomson group F 3

Introduction to Thomson group F 3

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

The elements x_0 and x_1 generate Thompson's group F with:

Fabienne Chouraqui The Yang-Baxter equation and Thompson's group F

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

The elements x_0 and x_1 generate Thompson's group F with:

$$\langle x_0, x_1 | x_2 x_1 = x_1 x_3, x_3 x_1 = x_1 x_4 \rangle, \text{ where } x_2 = x_0 x_1 x_0^{-1} \\ \text{and } x_3 = x_0^2 x_1 x_0^{-2}, x_4 = x_0^3 x_1 x_0^{-3}.$$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

The elements x_0 and x_1 generate Thompson's group F with:

1
$$\langle x_0, x_1 | x_2 x_1 = x_1 x_3, x_3 x_1 = x_1 x_4 \rangle$$
, where $x_2 = x_0 x_1 x_0^{-1}$
and $x_3 = x_0^2 x_1 x_0^{-2}$, $x_4 = x_0^3 x_1 x_0^{-3}$.

2 $\langle x_0, x_1 | x_2x_0 = x_0x_3, x_3x_0 = x_0x_4 \rangle$, where $x_2 = x_0^{-1}x_1x_0$ and more generally $x_{n+1} = x_{n-1}^{-1}x_nx_{n-1}$, $2 \le n \le 4$.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

The elements x_0 and x_1 generate Thompson's group F with:

1
$$\langle x_0, x_1 | x_2 x_1 = x_1 x_3, x_3 x_1 = x_1 x_4 \rangle$$
, where $x_2 = x_0 x_1 x_0^{-1}$
and $x_3 = x_0^2 x_1 x_0^{-2}$, $x_4 = x_0^3 x_1 x_0^{-3}$.

2
$$\langle x_0, x_1 | x_2x_0 = x_0x_3, x_3x_0 = x_0x_4 \rangle$$
, where $x_2 = x_0^{-1}x_1x_0$
and more generally $x_{n+1} = x_{n-1}^{-1}x_nx_{n-1}$, $2 \le n \le 4$.

An infinite presentation of Thompson group F

$$\langle x_0, x_1, x_2, \dots \mid x_n x_k = x_k x_{n+1}, \ k < n \rangle$$

 $x_n = x_0 x_{n-1} x_0^{-1} = x_0^{n-1} x_1 x_0^{-(n-1)}$

イロト イボト イヨト イヨト

F as the structure group of a partial solution (1)

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Definition of a partial solution

Let $X = \{x_0, x_1, x_2, ...\}$. Let $\sigma_n : X \to X$ and $\gamma_n : X \to X$ be the following partial functions.

F as the structure group of a partial solution (1)

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

Let $X = \{x_0, x_1, x_2, ...\}$. Let $\sigma_n : X \to X$ and $\gamma_n : X \to X$ be the following partial functions.

Definition of a partial solution

$$\sigma_n(k) = \begin{cases} k & k \leq n \\ \text{not defined} & k = n+1 \\ k-1 & k \geq n+2 \end{cases}$$
$$\gamma_n(k) = \begin{cases} k & k \leq n-2 \\ \text{not defined} & k = n-1 \\ n & k = n \\ k+1 & k \geq n+1 \end{cases}$$

A D D A D D A D D A D D A

F as the structure group of a partial solution (1)

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Let $X = \{x_0, x_1, x_2, ...\}$. Let $\sigma_n : X \to X$ and $\gamma_n : X \to X$ be the following partial functions.

 $\sigma_n(k) = \begin{cases} k & k \le n \\ \text{not defined} & k = n+1 \\ k-1 & k \ge n+2 \end{cases}$ $\gamma_n(k) = \begin{cases} k & k \le n-2 \\ \text{not defined} & k = n-1 \\ n & k = n \\ k+1 & k \ge n+1 \end{cases}$

$$\begin{array}{l} \mathcal{D}_{\sigma_n} = X \setminus \{x_{n+1}\} & \mathcal{R}_{\sigma_n} = X \\ \mathcal{D}_{\gamma_n} = X \setminus \{x_{n-1}\} & \mathcal{R}_{\gamma_n} = X \setminus \{x_{n-1}, x_{n+1}\} \\ \end{array}$$

Definition of a partial solution

F as the structure group of a partial solution $\mathcal{F}(2)$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Definition of a partial solution \mathcal{F}

Let define the following partial function:

э

F as the structure group of a partial solution $\mathcal{F}(2)$

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Definition of a partial solution ${\cal F}$

Let define the following partial function:

$$r: X \times X \to X \times X$$

$$r(x_i, x_j) = (x_{\sigma_i(j)}, x_{\gamma_j(i)})$$
(3)

Let $\mathcal{D} \subset X \times X$ and $\mathcal{R} \subset X \times X$ be the domain and range of r.

F as the structure group of a partial solution $\mathcal{F}(2)$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Definition of a partial solution \mathcal{F}

Let define the following partial function:

Let $\mathcal{D} \subset X \times X$ and $\mathcal{R} \subset X \times X$ be the domain and range of r.

Lemma

(X, r) is a square-free, non-degenerate, involutive partial set-theoretic solution, denoted by \mathcal{F} .

イロト イヨト イヨト イヨト

F as the structure group of a partial solution $\mathcal{F}(3)$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Theorem [F.C]

Let $r: \mathcal{D} \to \mathcal{R}$ and \mathcal{F} as defined above. Then

F as the structure group of a partial solution $\mathcal{F}(3)$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Theorem [F.C]

Let $r : \mathcal{D} \to \mathcal{R}$ and \mathcal{F} as defined above. Then

1 G(X, r), the structure group of \mathcal{F} , is isomorphic to the Thompson group F.

F as the structure group of a partial solution $\mathcal{F}(3)$

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

Theorem [F.C]

Let $r : \mathcal{D} \to \mathcal{R}$ and \mathcal{F} as defined above. Then

- **1** G(X, r), the structure group of \mathcal{F} , is isomorphic to the Thompson group F.
- 2 IM(X, r), the structure inverse monoid of *F*, embeds into the inverse monoid A ⋈ I_X, where A is the commutative inverse monoid {f : D_f → Z | D_f ⊆ X}, with pointwise operation, and I_X is the inverse symmetric monoid.

3

The Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group *F*

2nd Results

■ *G*(*X*, *r*), with *X* finite, is a Garside group. Garside groups are torsion-free and biautomatic. *F* is also torsion-free, but it is not known wether it is automatic.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

- *G*(*X*, *r*), with *X* finite, is a Garside group. Garside groups are torsion-free and biautomatic. *F* is also torsion-free, but it is not known wether it is automatic.
- G(X, r), with X finite, is solvable. F' is simple, so F'' = F', and F is not nilpotent, nor solvable.

A D D A D D A D D A D D A

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

- *G*(*X*, *r*), with *X* finite, is a Garside group. Garside groups are torsion-free and biautomatic. *F* is also torsion-free, but it is not known wether it is automatic.
- G(X, r), with X finite, is solvable. F' is simple, so F'' = F', and F is not nilpotent, nor solvable.
- The centre of the structure group of an indecomposable solution (*X*, *r*), with *X* finite, is cyclic. *Z*(*F*) = {1}.

A D D A D D A D D A D D A

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

- *G*(*X*, *r*), with *X* finite, is a Garside group. Garside groups are torsion-free and biautomatic. *F* is also torsion-free, but it is not known wether it is automatic.
- G(X, r), with X finite, is solvable. F' is simple, so F'' = F', and F is not nilpotent, nor solvable.
- The centre of the structure group of an indecomposable solution (*X*, *r*), with *X* finite, is cyclic. *Z*(*F*) = {1}.
- *G*(*X*, *r*), with *X* finite, is a Bieberbach group, As far as we know, there is no result of this kind for *F*.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

- *G*(*X*, *r*), with *X* finite, is a Garside group. Garside groups are torsion-free and biautomatic. *F* is also torsion-free, but it is not known wether it is automatic.
- G(X, r), with X finite, is solvable. F' is simple, so F'' = F', and F is not nilpotent, nor solvable.
- The centre of the structure group of an indecomposable solution (*X*, *r*), with *X* finite, is cyclic. *Z*(*F*) = {1}.
- *G*(*X*, *r*), with *X* finite, is a Bieberbach group, As far as we know, there is no result of this kind for *F*.
- The quotient group *F*/*F*′ is isomorphic to Z², and so any proper quotient of *F* is abelian. This is not necessarily the case for the structure group of a solution.

The Yang-Baxter equation and Thompson's group F

> Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results

Thomson group F

2nd Results

- *G*(*X*, *r*), with *X* finite, is a Garside group. Garside groups are torsion-free and biautomatic. *F* is also torsion-free, but it is not known wether it is automatic.
- G(X, r), with X finite, is solvable. F' is simple, so F'' = F', and F is not nilpotent, nor solvable.
- The centre of the structure group of an indecomposable solution (*X*, *r*), with *X* finite, is cyclic. *Z*(*F*) = {1}.
- *G*(*X*, *r*), with *X* finite, is a Bieberbach group, As far as we know, there is no result of this kind for *F*.
- The quotient group *F*/*F*′ is isomorphic to Z², and so any proper quotient of *F* is abelian. This is not necessarily the case for the structure group of a solution.
- What can be said about the other Thompson's groups F, T, V, with $F \subset T \subset V$?

	The end
The Yang-Baxter equation and Thompson's group F	
Fabienne Chouraqui	
QYBE	
Inverse monoids	Thank you!
Partial solutions	
1st Results	
Thomson group F	
2nd Results	
	 < 미 > < 图 > < 분 > < 분 > < 분 - 외익()