The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Results
Thomson
group F
2nd Results

The Yang-Baxter equation, braces and Thompson's group F

Algebra Days in Caen 2022: from Yang-Baxter to Garside, Caen 2022

Fabienne Chouraqui

University of Haifa, Campus Oranim

The quantum Yang-Baxter equation - QYBE

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

The quantum Yang-Baxter equation - QYBE

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

A set-theoretical solution (X, r) of the QYBE [Drinfeld]

The quantum Yang-Baxter equation - QYBE

- V is a vector space spanned by a set X.

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

A set-theoretical solution (X, r) of the QYBE [Drinfeld]

The quantum Yang-Baxter equation - QYBE

Let $R: V \otimes V \rightarrow V \otimes V$ be a linear operator, where V is a vector space.
The QYBE is the equality $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ of linear transformations on $V \otimes V \otimes V$, where $R^{i j}$ means R acting on the i-th and j-th components.

A set-theoretical solution (X, r) of the QYBE [Drinfeld]

- V is a vector space spanned by a set X.
- R is the linear operator induced by a mapping $r: X \times X \rightarrow X \times X$, that satisfies $r^{12} r^{23} r^{12}=r^{23} r^{12} r^{23}$.

Properties of a solution (X, r)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let r be defined in the following way: $r(i, j)=\left(\sigma_{i}(j), \gamma_{j}(i)\right)$, where $\sigma_{i}, \gamma_{i}: X \rightarrow X$.

Properties of a solution (X, r)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let r be defined in the following way: $r(i, j)=\left(\sigma_{i}(j), \gamma_{j}(i)\right)$, where $\sigma_{i}, \gamma_{i}: X \rightarrow X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

■ (X, r) is non-degenerate $\Leftrightarrow \sigma_{i}$ and γ_{i} are bijective, $1 \leq i \leq n$.

Properties of a solution (X, r)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let r be defined in the following way: $r(i, j)=\left(\sigma_{i}(j), \gamma_{j}(i)\right)$, where $\sigma_{i}, \gamma_{i}: X \rightarrow X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

■ (X, r) is non-degenerate $\Leftrightarrow \sigma_{i}$ and γ_{i} are bijective, $1 \leq i \leq n$.

- (X, r) is involutive $\Leftrightarrow r^{2}=I d_{X^{2}}$.

Properties of a solution (X, r)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let r be defined in the following way: $r(i, j)=\left(\sigma_{i}(j), \gamma_{j}(i)\right)$, where $\sigma_{i}, \gamma_{i}: X \rightarrow X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

■ (X, r) is non-degenerate $\Leftrightarrow \sigma_{i}$ and γ_{i} are bijective, $1 \leq i \leq n$.
■ (X, r) is involutive $\Leftrightarrow r^{2}=I d_{X^{2}}$.

- (X, r) is braided $\Leftrightarrow r^{12} r^{23} r^{12}=r^{23} r^{12} r^{23}$

Properties of a solution (X, r)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let r be defined in the following way: $r(i, j)=\left(\sigma_{i}(j), \gamma_{j}(i)\right)$, where $\sigma_{i}, \gamma_{i}: X \rightarrow X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

■ (X, r) is non-degenerate $\Leftrightarrow \sigma_{i}$ and γ_{i} are bijective, $1 \leq i \leq n$.
■ (X, r) is involutive $\Leftrightarrow \sigma_{\sigma_{i}(j)} \gamma_{j}(i)=i$ and $\gamma_{\gamma_{j}(i)} \sigma_{i}(j)=j$, $1 \leq i, j \leq n$.
■ (X, r) is braided $\Leftrightarrow \sigma_{i} \sigma_{j}=\sigma_{\sigma_{i}(j)} \sigma_{\gamma_{j}(i)}$ and
$\gamma_{j} \gamma_{i}=\gamma_{\gamma_{j}(i)} \gamma_{\sigma_{i}(j)}$
and $\gamma_{\sigma_{\gamma_{j}(i)}(k)} \sigma_{i}(j)=\sigma_{\gamma_{\sigma_{j}(k)}(i)} \gamma_{k}(j), 1 \leq i, j, k \leq n$.

The QYBE group: the structure group of (X, S)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The QYBE group: the structure group of (X, S)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]
■ The generators: $X=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$.

The QYBE group: the structure group of (X, S)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]
■ The generators: $X=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$.

- The defining relations: $x_{i} x_{j}=x_{k} x_{l}$ whenever $S(i, j)=(k, l)$

The QYBE group: the structure group of (X, S)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Assumption: The pair (X, r) is non-degenerate, involutive and braided. It is called a non-degenerate, involutive set-solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]
■ The generators: $X=\left\{x_{1}, x_{2}, . ., x_{n}\right\}$.

- The defining relations: $x_{i} x_{j}=x_{k} x_{l}$ whenever $S(i, j)=(k, l)$

There are exactly $\frac{n(n-1)}{2}$ defining relations.

Example

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partiai
solutions
1st Results
Thomson
group F
2nd Results

$$
\text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} .
$$

$$
\begin{array}{ll}
\sigma_{0}=(0)(1)(2,3) & \sigma_{1}=(1,2,0,3) \\
\sigma_{2}=(2)(3)(0,1) & \sigma 3=(1,3,0,2) \tag{1}
\end{array}
$$

The solution is indecomposable with defining relations:

$$
\begin{array}{ll}
x_{1} x_{1}=x_{2} x_{0} & x_{1} x_{0}=x_{3} x_{2} \\
x_{0} x_{3}=x_{2} x_{1} & x_{1} x_{2}=x_{0} x_{1} \tag{2}\\
x_{2} x_{3}=x_{3} x_{0} & x_{3}^{2}=x_{0} x_{2}
\end{array}
$$

Example

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

$$
\text { Let } X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} .
$$

$$
\begin{array}{ll}
\sigma_{0}=(0)(1)(2,3) & \sigma_{1}=(1,2,0,3) \\
\sigma_{2}=(2)(3)(0,1) & \sigma 3=(1,3,0,2) \tag{1}
\end{array}
$$

The solution is indecomposable with defining relations:

$$
\begin{array}{ll}
x_{1} x_{1}=x_{2} x_{0} & x_{1} x_{0}=x_{3} x_{2} \\
x_{0} x_{3}=x_{2} x_{1} & x_{1} x_{2}=x_{0} x_{1} \tag{2}\\
x_{2} x_{3}=x_{3} x_{0} & x_{3}^{2}=x_{0} x_{2}
\end{array}
$$

The center of G is generated by $\Delta=\left(x_{0} x_{1}\right)^{2}=\left(x_{2} x_{3}\right)^{2}$

Definition and properties of inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE
Inverse monoids

Partial

solutions

1st Results
Thomson
group F
2nd Results

Definition of an inverse semigroup and an inverse monoid

Definition and properties of inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial

solutions

1st Results
Thomson
group F
2nd Results

Definition of an inverse semigroup and an inverse monoid

- A regular semigroup is a semigroup S such that for every element $s \in S$ there exists at least one element $s^{*} \in S$ such that $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. s^{*} is called an inverse of s.

Definition and properties of inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson
group F
2nd Results

Definition of an inverse semigroup and an inverse monoid

- A regular semigroup is a semigroup S such that for every element $s \in S$ there exists at least one element $s^{*} \in S$ such that $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. s^{*} is called an inverse of s.
- An inverse semigroup is a regular semigroup such that every element in S has a unique inverse.

Definition and properties of inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Results
Thomson
group F
2nd Results

Definition of an inverse semigroup and an inverse monoid

- A regular semigroup is a semigroup S such that for every element $s \in S$ there exists at least one element $s^{*} \in S$ such that $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. s^{*} is called an inverse of s.
- An inverse semigroup is a regular semigroup such that every element in S has a unique inverse.
- An inverse monoid M is an inverse semigroup with multiplicative identity 1.

Definition and properties of inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

Definition of an inverse semigroup and an inverse monoid

- A regular semigroup is a semigroup S such that for every element $s \in S$ there exists at least one element $s^{*} \in S$ such that $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. s^{*} is called an inverse of s.
- An inverse semigroup is a regular semigroup such that every element in S has a unique inverse.
- An inverse monoid M is an inverse semigroup with multiplicative identity 1.
An inverse semigroup is a regular semigroup in which all the idempotents commute: the set $E(S)$ of idempotents of an inverse semigroup S is a commutative subsemigroup.
$E(S)$ is ordered by $e \leq f$ iff ef $=e=f e$.

Commutative inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

Some definitions (X a set)

- A partial function of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by \mathcal{D}_{f}, and \mathcal{R}_{f} respectively.

QYBE

Inverse monoids

Partial

solutions

1st Results
Thomson
group F
2nd Results

Commutative inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Resuits
Thomson
group F
2nd Results

Some definitions (X a set)

- A partial function of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by \mathcal{D}_{f}, and \mathcal{R}_{f} respectively.
■ A partial bijection of X is a bijection $f: \mathcal{D}_{f} \rightarrow \mathcal{R}_{f}$.

Commutative inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Resuits
Thomson
group F
2nd Results

Some definitions (X a set)

- A partial function of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by \mathcal{D}_{f}, and \mathcal{R}_{f} respectively.
■ A partial bijection of X is a bijection $f: \mathcal{D}_{f} \rightarrow \mathcal{R}_{f}$.
- If $f \neq I d, \mathcal{D}_{f}$ is allowed to be the empty set.

Commutative inverse monoids

Some definitions (X a set)

- A partial function of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by \mathcal{D}_{f}, and \mathcal{R}_{f} respectively.
■ A partial bijection of X is a bijection $f: \mathcal{D}_{f} \rightarrow \mathcal{R}_{f}$.
- If $f \neq I d, \mathcal{D}_{f}$ is allowed to be the empty set.

In a commutative inverse monoid A generated by a set X :

- Every element is in corr. with a partial function with finite support $f: X \rightarrow \mathbb{Z}, x_{i} \mapsto m_{i}$.

Commutative inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse monoids

Partial
solutions
1st Results
Thomson
group F
2nd Results

Some definitions (X a set)

- A partial function of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by \mathcal{D}_{f}, and \mathcal{R}_{f} respectively.
■ A partial bijection of X is a bijection $f: \mathcal{D}_{f} \rightarrow \mathcal{R}_{f}$.
- If $f \neq I d, \mathcal{D}_{f}$ is allowed to be the empty set.

In a commutative inverse monoid A generated by a set X :

- Every element is in corr. with a partial function with finite support $f: X \rightarrow \mathbb{Z}, x_{i} \mapsto m_{i}$.
- The operation in A is defined pointwise, with $(f+g)(x)=f(x)+g(x)$, where $\mathcal{D}_{f+g}=\mathcal{D}_{f} \cap \mathcal{D}_{g}$.

Commutative inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse monoids

Partial
solutions
1st Results
Thomson
group F
2nd Results

Some definitions (X a set)

- A partial function of X is a function f between two (non-necessarily proper) subsets of X, the domain and the range of f are denoted by \mathcal{D}_{f}, and \mathcal{R}_{f} respectively.
- A partial bijection of X is a bijection $f: \mathcal{D}_{f} \rightarrow \mathcal{R}_{f}$.
- If $f \neq I d, \mathcal{D}_{f}$ is allowed to be the empty set.

In a commutative inverse monoid A generated by a set X :

- Every element is in corr. with a partial function with finite support $f: X \rightarrow \mathbb{Z}, x_{i} \mapsto m_{i}$.
- The operation in A is defined pointwise, with $(f+g)(x)=f(x)+g(x)$, where $\mathcal{D}_{f+g}=\mathcal{D}_{f} \cap \mathcal{D}_{g}$.
- The identity is 0_{X}, the zero function on X.

Symmetric inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

In a symmetric inverse monoid I_{X}, X a set:

- Every element is a partial bijection of X.

Inverse monoids

Partial

solutions

1st Results
Thomson
group F
2nd Results

Symmetric inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Resuits
Thomson
group F
2nd Results

In a symmetric inverse monoid I_{X}, X a set :

- Every element is a partial bijection of X.
- The operation is composition of functions \circ : If $f, g \in \mathbf{I}_{X}$, then $f \circ g$ is the composition of partial maps in the largest domain where it makes sense, that is $\mathcal{D}_{f \circ g}=g^{-1}\left(\mathcal{D}_{f} \cap \mathcal{R}_{g}\right)$, and $\mathcal{R}_{f \circ g}=f\left(\mathcal{D}_{f} \cap \mathcal{R}_{g}\right)$.

Symmetric inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Resuits
Thomson
group F
2nd Results

In a symmetric inverse monoid I_{X}, X a set :

- Every element is a partial bijection of X.
- The operation is composition of functions \circ : If $f, g \in \mathbf{I}_{X}$, then $f \circ g$ is the composition of partial maps in the largest domain where it makes sense, that is $\mathcal{D}_{f \circ g}=g^{-1}\left(\mathcal{D}_{f} \cap \mathcal{R}_{g}\right)$, and $\mathcal{R}_{f \circ g}=f\left(\mathcal{D}_{f} \cap \mathcal{R}_{g}\right)$.
- There is a zero element: the vacuous map $\emptyset \rightarrow \emptyset$.

Symmetric inverse monoids

In a symmetric inverse monoid I_{X}, X a set :

- Every element is a partial bijection of X.
- The operation is composition of functions \circ : If $f, g \in I_{X}$, then $f \circ g$ is the composition of partial maps in the largest domain where it makes sense, that is $\mathcal{D}_{f \circ g}=g^{-1}\left(\mathcal{D}_{f} \cap \mathcal{R}_{g}\right)$, and $\mathcal{R}_{f \circ g}=f\left(\mathcal{D}_{f} \cap \mathcal{R}_{g}\right)$.
- There is a zero element: the vacuous map $\emptyset \rightarrow \emptyset$.

■ The idempotents of I_{X} are the partial identities on X.

Operations on inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Resuits
Thomson
group F
2nd Results

Let S be a semigroup, M be a monoid
M is said to act on S (on the left) (by endomorphisms) if there exists a map $M \times S \rightarrow S$, denoted by $(a, s) \mapsto a \bullet s$ satisfying the following conditions:

■ for any $a, b \in M, s \in S,(a b) \bullet s=a \bullet(b \bullet s)$.
■ for any $a \in M, s, s^{\prime} \in S, a \bullet\left(s s^{\prime}\right)=(a \bullet s)\left(a \bullet s^{\prime}\right)$.
■ for every $s \in S, 1 \bullet s=s$.

Operations on inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Resuits
Thomson
group F
2nd Results

Let S be a semigroup, M be a monoid
M is said to act on S (on the left) (by endomorphisms) if there exists a map $M \times S \rightarrow S$, denoted by $(a, s) \mapsto a \bullet s$ satisfying the following conditions:

■ for any $a, b \in M, s \in S,(a b) \bullet s=a \bullet(b \bullet s)$.
$■$ for any $a \in M, s, s^{\prime} \in S, a \bullet\left(s s^{\prime}\right)=(a \bullet s)\left(a \bullet s^{\prime}\right)$.
■ for every $s \in S, 1 \bullet s=s$.
If S is a semigroup with zero 0 , the additional following property is required:
■ for any $a \in M, a \bullet 0=0$.

Operations on inverse monoids

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse monoids

Partial solutions

1st Results
Thomson
group F
2nd Results

Let S be a semigroup, M be a monoid
M is said to act on S (on the left) (by endomorphisms) if there exists a map $M \times S \rightarrow S$, denoted by $(a, s) \mapsto a \bullet s$ satisfying the following conditions:

- for any $a, b \in M, s \in S,(a b) \bullet s=a \bullet(b \bullet s)$.

■ for any $a \in M, s, s^{\prime} \in S, a \bullet\left(s s^{\prime}\right)=(a \bullet s)\left(a \bullet s^{\prime}\right)$.

- for every $s \in S, 1 \bullet s=s$.

If S is a semigroup with zero 0 , the additional following property is required:
\square for any $a \in M, a \bullet 0=0$.

Let M act on S (on the left) (by endomorphisms)

The semidirect product $S \rtimes M$ is not an inverse semigroup!!!

The restricted product of inverse semigroups

Let M, S be inverse semigroups. Let $E(M)$ denote the set of idempotents of M (ordered by $e \leq f$ if and only if ef $=e=f e$). Assume the following assumptions:

- M acts on S by endomorphisms.
- There exists a surjective homomorphism $\epsilon: S \rightarrow E(M)$.
- For each $s \in S$, there exists $\epsilon(s) \in E(M)$ such that

$$
\epsilon(s) \leq e \Longleftrightarrow e \bullet s=s, \forall e \in E(M)
$$

Let $S \bowtie M$ be the following set with the binary operation defined below:

$$
\begin{gathered}
S \bowtie M=\{(s, m) \in S \times M \mid r(m)=\epsilon(s)\} \\
(s, m)\left(s^{\prime}, m^{\prime}\right)=\left(s\left(m \bullet s^{\prime}\right), m m^{\prime}\right)
\end{gathered}
$$

$S \bowtie M$ is an inverse semigroup.

Definition and properties of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

$$
\begin{aligned}
& \text { Define } r: \mathcal{D} \rightarrow \mathcal{R} \text {, by } r(x, y)=\left(\sigma_{x}(y), \gamma_{y}(x)\right) \text {, where } \\
& \sigma_{x}: \mathcal{D}_{\sigma_{x}} \rightarrow \mathcal{R}_{\sigma_{x}}, \gamma_{y}: \mathcal{D}_{\gamma_{y}} \rightarrow \mathcal{R}_{\gamma_{y}} ; \mathcal{D}_{\sigma_{x}}, \mathcal{R}_{\sigma_{x}}, \mathcal{D}_{\gamma_{y}}, \mathcal{R}_{\gamma_{y}} \subseteq x
\end{aligned}
$$

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Definition and properties of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

> Define $r: \mathcal{D} \rightarrow \mathcal{R}$, by $r(x, y)=\left(\sigma_{x}(y), \gamma_{y}(x)\right)$, where $\sigma_{x}: \mathcal{D}_{\sigma_{x}} \rightarrow \mathcal{R}_{\sigma_{x}}, \gamma_{y}: \mathcal{D}_{\gamma_{y}} \rightarrow \mathcal{R}_{\gamma_{y}} ; \mathcal{D}_{\sigma_{x}}, \mathcal{R}_{\sigma_{x}}, \mathcal{D}_{\gamma_{y}}, \mathcal{R}_{\gamma_{y}} \subseteq x$

■ $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$ and $x \in \mathcal{D}_{\gamma_{y}}$.

Definition and properties of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

> Define $r: \mathcal{D} \rightarrow \mathcal{R}$, by $r(x, y)=\left(\sigma_{x}(y), \gamma_{y}(x)\right)$, where $\sigma_{x}: \mathcal{D}_{\sigma_{x}} \rightarrow \mathcal{R}_{\sigma_{x}}, \gamma_{y}: \mathcal{D}_{\gamma_{y}} \rightarrow \mathcal{R}_{\gamma_{y}} ; \mathcal{D}_{\sigma_{x}}, \mathcal{R}_{\sigma_{x}}, \mathcal{D}_{\gamma_{y}}, \mathcal{R}_{\gamma_{y}} \subseteq x$

■ $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$ and $x \in \mathcal{D}_{\gamma_{y}}$.
■ (X, r) is non-degenerate, if $\forall x, y \in X, \sigma_{x}$ and γ_{y} are bijective (i.e. σ_{x} and γ_{y} are partial bijections of X).

Definition and properties of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

> Define $r: \mathcal{D} \rightarrow \mathcal{R}$, by $r(x, y)=\left(\sigma_{x}(y), \gamma_{y}(x)\right)$, where $\sigma_{x}: \mathcal{D}_{\sigma_{x}} \rightarrow \mathcal{R}_{\sigma_{x}}, \gamma_{y}: \mathcal{D}_{\gamma_{y}} \rightarrow \mathcal{R}_{\gamma_{y}} ; \mathcal{D}_{\sigma_{x}}, \mathcal{R}_{\sigma_{x}}, \mathcal{D}_{\gamma_{y}}, \mathcal{R}_{\gamma_{y}} \subseteq x$

■ $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$ and $x \in \mathcal{D}_{\gamma_{y}}$.
■ (X, r) is non-degenerate, if $\forall x, y \in X, \sigma_{x}$ and γ_{y} are bijective (i.e. σ_{x} and γ_{y} are partial bijections of X).
■ (X, r) is involutive if for all pairs $(x, y) \in X^{2}, x \in \mathcal{D}_{\gamma_{y}}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$, and additionally if $r(x, y)$ is defined, then $r^{2}(x, y)$ is also defined and satisfies $r^{2}=l d$.

Definition and properties of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

> Define $r: \mathcal{D} \rightarrow \mathcal{R}$, by $r(x, y)=\left(\sigma_{x}(y), \gamma_{y}(x)\right)$, where $\sigma_{x}: \mathcal{D}_{\sigma_{x}} \rightarrow \mathcal{R}_{\sigma_{x}}, \gamma_{y}: \mathcal{D}_{\gamma_{y}} \rightarrow \mathcal{R}_{\gamma_{y}} ; \mathcal{D}_{\sigma_{x}}, \mathcal{R}_{\sigma_{x}}, \mathcal{D}_{\gamma_{y}}, \mathcal{R}_{\gamma_{y}} \subseteq x$
$\square(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$ and $x \in \mathcal{D}_{\gamma_{y}}$.
■ (X, r) is non-degenerate, if $\forall x, y \in X, \sigma_{x}$ and γ_{y} are bijective (i.e. σ_{x} and γ_{y} are partial bijections of X).
■ (X, r) is involutive if for all pairs $(x, y) \in X^{2}, x \in \mathcal{D}_{\gamma_{y}}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$, and additionally if $r(x, y)$ is defined, then $r^{2}(x, y)$ is also defined and satisfies $r^{2}=l d$.
$\square(X, r)$ is braided if $r^{12} r^{23} r^{12}(x, y, z)=r^{23} r^{12} r^{23}(x, y, z)$, $\forall x, y, z \in X$ such that both are defined.

Definition and properties of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

Let $X \neq \emptyset$ be a set. Let $\mathcal{D}, \mathcal{R} \subseteq X \times X$.

> Define $r: \mathcal{D} \rightarrow \mathcal{R}$, by $r(x, y)=\left(\sigma_{x}(y), \gamma_{y}(x)\right)$, where $\sigma_{x}: \mathcal{D}_{\sigma_{x}} \rightarrow \mathcal{R}_{\sigma_{x}}, \gamma_{y}: \mathcal{D}_{\gamma_{y}} \rightarrow \mathcal{R}_{\gamma_{y}} ; \mathcal{D}_{\sigma_{x}}, \mathcal{R}_{\sigma_{x}}, \mathcal{D}_{\gamma_{y}}, \mathcal{R}_{\gamma_{y}} \subseteq x$

■ $(x, y) \in \mathcal{D}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$ and $x \in \mathcal{D}_{\gamma_{y}}$.
■ (X, r) is non-degenerate, if $\forall x, y \in X, \sigma_{x}$ and γ_{y} are bijective (i.e. σ_{x} and γ_{y} are partial bijections of X).

- (X, r) is involutive if for all pairs $(x, y) \in X^{2}, x \in \mathcal{D}_{\gamma_{y}}$ if and only if $y \in \mathcal{D}_{\sigma_{x}}$, and additionally if $r(x, y)$ is defined, then $r^{2}(x, y)$ is also defined and satisfies $r^{2}=l d$.
$\square(X, r)$ is braided if $r^{12} r^{23} r^{12}(x, y, z)=r^{23} r^{12} r^{23}(x, y, z)$, $\forall x, y, z \in X$ such that both are defined.
$\square(X, r)$ is square-free, if $\forall x \in X,(x, x) \in \mathcal{D}$ and $r(x, x)=(x, x)$.

An example of square-free partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson
group F
2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution, $X=\left\{x_{0}, x_{1}, x_{2}\right\}$
$\mathcal{D}=\mathcal{R}=\left\{\left(x_{0}, x_{2}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{0}\right),\left(x_{2}, x_{1}\right),\left(x_{i}, x_{i}\right), \forall i\right\}$.

An example of square-free partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution, $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

$$
\begin{array}{cc}
\mathcal{D}=\mathcal{R}=\left\{\left(x_{0}, x_{2}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{0}\right),\left(x_{2}, x_{1}\right),\left(x_{i}, x_{i}\right), \forall i\right\} . \\
\mathcal{D}_{\sigma_{0}}=\mathcal{D}_{\gamma_{0}}=\{0,2\} & \sigma_{0}=\gamma_{0}=(0)(2) \\
\mathcal{D}_{\sigma_{1}}=\mathcal{D}_{\gamma_{1}}=\{1,2\} & \sigma_{1}=\gamma_{1}=(1)(2) \\
\mathcal{D}_{\sigma_{2}}=\mathcal{D}_{\gamma_{2}}=\{0,1,2\} & \sigma_{2}=\gamma_{2}=(0,1)(2)
\end{array}
$$

An example of square-free partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

If (X, r) is braided, we call (X, r) a partial set-theoretic solution. If (X, r) is a non-degenerate, involutive partial set-theoretic solution, we call it a partial solution.

An example of square-free partial solution, $X=\left\{x_{0}, x_{1}, x_{2}\right\}$

$$
\begin{array}{cc}
\mathcal{D}=\mathcal{R}=\left\{\left(x_{0}, x_{2}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{0}\right),\left(x_{2}, x_{1}\right),\left(x_{i}, x_{i}\right), \forall i\right\} . \\
\mathcal{D}_{\sigma_{0}}=\mathcal{D}_{\gamma_{0}}=\{0,2\} & \sigma_{0}=\gamma_{0}=(0)(2) \\
\mathcal{D}_{\sigma_{1}}=\mathcal{D}_{\gamma_{1}}=\{1,2\} & \sigma_{1}=\gamma_{1}=(1)(2) \\
\mathcal{D}_{\sigma_{2}}=\mathcal{D}_{\gamma_{2}}=\{0,1,2\} & \sigma_{2}=\gamma_{2}=(0,1)(2)
\end{array}
$$

(X, r) is a square-free partial solution, with:

$$
\begin{array}{ll}
r\left(x_{0}, x_{2}\right)=\left(x_{2}, x_{1}\right) & r\left(x_{2}, x_{1}\right)=\left(x_{0}, x_{2}\right) \\
r\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{0}\right) & r\left(x_{2}, x_{0}\right)=\left(x_{1}, x_{2}\right)
\end{array}
$$

The structure inverse monoid of a partial solution

The
Yang-Baxter equation and Thompson's
group F
Fabienne
Chouraqui
Let (X, r) be a partial set-theoretic solution.

- The structure group of (X, r) is

$$
G(X, r)=\operatorname{Gp}\left\langle X \mid \quad x y=\sigma_{x}(y) \gamma_{y}(x) ;(x, y) \in \mathcal{D}\right\rangle
$$

The structure inverse monoid of a partial solution

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

Let (X, r) be a partial set-theoretic solution.

- The structure group of (X, r) is

$$
G(X, r)=\operatorname{Gp}\left\langle X \mid x y=\sigma_{x}(y) \gamma_{y}(x) ;(x, y) \in \mathcal{D}\right\rangle .
$$

- The structure inverse monoid of (X, r) is $\operatorname{IM}(X, r)=\operatorname{lnv}\left\langle X \mid x y=\sigma_{x}(y) \gamma_{y}(x) ;(x, y) \in \mathcal{D}\right\rangle$.

The structure inverse monoid of a partial solution

The
Yang-Baxter equation and Thompson's
group F
Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Let (X, r) be a partial set-theoretic solution.

- The structure group of (X, r) is

$$
G(X, r)=G p\left\langle X \mid x y=\sigma_{x}(y) \gamma_{y}(x) ;(x, y) \in \mathcal{D}\right\rangle
$$

- The structure inverse monoid of (X, r) is $\operatorname{IM}(X, r)=\operatorname{lnv}\left\langle X \mid x y=\sigma_{x}(y) \gamma_{y}(x) ;(x, y) \in \mathcal{D}\right\rangle$.

The structure group of a trivial partial solution is a partially commutative group (or a right-angled Artin group)

A partial solution (X, r) is trivial if for every $x \in X$, $\sigma_{x}=\operatorname{Id}_{\mathcal{D}_{\sigma_{X}}}, \gamma_{x}=\operatorname{Id}_{\mathcal{D}_{\gamma_{x}}}$.

Properties of square-free partial solutions 1

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson group F 2nd Results

Let (X, r) be a partial set-theoretic solution.
I_{X} : the symmetric inverse monoid.
A : the commutative inverse monoid (partial $f: X \rightarrow \mathbb{Z}$, finite support).

Let $\tau \in \mathrm{I}_{X}$ and $f \in A, f: X \rightarrow \mathbb{Z}$ a partial function
I_{X} acts (totally) on A by endomorphisms: $\tau \bullet f=f \circ \tau^{-1}$

Properties of square-free partial solutions 2

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson
group F
2nd Results

Let $x \in X, g, h \in \operatorname{IM}(X, r), f \in A$:
1 The following map is a homomorphism of monoids:

$$
\alpha: \operatorname{IM}(X, r) \rightarrow \mathrm{I}_{X} \quad x \mapsto \sigma_{x}
$$

Properties of square-free partial solutions 2

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial solutions

Let $x \in X, g, h \in \operatorname{IM}(X, r), f \in A$:
1 The following map is a homomorphism of monoids:

$$
\alpha: \operatorname{IM}(X, r) \rightarrow \mathrm{I}_{X} \quad x \mapsto \sigma_{X}
$$

2 There is an action of $\mathrm{IM}(X, r)$ on itself by endomorphisms:

$$
\begin{gathered}
g \bullet x_{j}=x_{\sigma_{g}(j)} \\
g \bullet h=g \bullet x_{j_{1}} \ldots x_{j_{k}}=x_{\sigma_{g}\left(j_{1}\right) \ldots x_{\sigma_{g}\left(j_{k}\right)}}
\end{gathered}
$$

Properties of square-free partial solutions 2

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

Let $x \in X, g, h \in \operatorname{IM}(X, r), f \in A$:
1 The following map is a homomorphism of monoids:

$$
\alpha: \operatorname{IM}(X, r) \rightarrow \mathrm{I}_{X} \quad x \mapsto \sigma_{x}
$$

2 There is an action of $\operatorname{IM}(X, r)$ on itself by endomorphisms:

$$
\begin{gathered}
g \bullet x_{j}=x_{\sigma_{g}(j)} \\
g \bullet h=g \bullet x_{j_{1}} \ldots x_{j_{k}}=x_{\sigma_{g}\left(j_{1}\right) \ldots x_{\sigma_{g}\left(j_{k}\right)}}
\end{gathered}
$$

3 There is an action of $\mathrm{IM}(X, r)$ on A by endomorphisms:

$$
g \bullet f=\sigma_{g} \bullet f=f \circ \sigma_{\rho}^{-1}
$$

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem 1 [F.C]

$$
\begin{gathered}
\pi: \mathrm{IM}(X, r) \rightarrow A \\
x_{i} \mapsto \delta_{i} \\
\pi(g h)=\pi(g)+g \bullet \pi(h)
\end{gathered}
$$

is an injective map.

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem 1 [F.C]

$$
\begin{gathered}
\pi: \mathrm{IM}(X, r) \rightarrow A \\
x_{i} \mapsto \delta_{i} \\
\pi(g h)=\pi(g)+g \bullet \pi(h)
\end{gathered}
$$

is an injective map.
The map $\delta_{x}: \mathcal{D}_{\delta_{x}} \rightarrow \mathbb{Z}$, with $\mathcal{D}_{\delta_{x}}=\mathcal{R}_{\sigma_{x}} \subseteq X$ is defined by:

$$
\delta_{x}(y)= \begin{cases}1 & y=x \\ 0 & y \in \mathcal{R}_{\sigma_{x}}, y \neq x\end{cases}
$$

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem 1 [F.C]

$$
\begin{gathered}
\pi: \mathrm{IM}(X, r) \rightarrow A \\
x_{i} \mapsto \delta_{i} \\
\pi(g h)=\pi(g)+g \bullet \pi(h)
\end{gathered}
$$

is an injective map.
The map $\delta_{x}: \mathcal{D}_{\delta_{x}} \rightarrow \mathbb{Z}$, with $\mathcal{D}_{\delta_{x}}=\mathcal{R}_{\sigma_{x}} \subseteq X$ is defined by:

$$
\delta_{x}(y)= \begin{cases}1 & y=x \\ 0 & y \in \mathcal{R}_{\sigma_{x}}, y \neq x\end{cases}
$$

Furthermore, $\delta_{x}(y)$ is not defined for $y \in X d \mathcal{R}_{\sigma_{x}}$.

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

Theorem 2 [F.C] The restricted product $A \bowtie \mathrm{I}_{X}$ is defined by:

$$
\begin{gathered}
A \bowtie \mathrm{I}_{X}=\left\{(f, \tau) \in A \times \mathrm{I}_{X} \mid \mathcal{R}_{\tau}=\mathcal{D}_{f}\right\} \\
(f, \tau)\left(f^{\prime}, \nu\right)=\left(f+\left(\tau \bullet f^{\prime}\right), \tau \nu\right)
\end{gathered}
$$

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem 2 [F.C] The restricted product $A \bowtie \mathrm{I}_{X}$ is defined by:

$$
\begin{gathered}
A \bowtie I_{X}=\left\{(f, \tau) \in A \times \mathrm{I}_{X} \mid \mathcal{R}_{\tau}=\mathcal{D}_{f}\right\} \\
(f, \tau)\left(f^{\prime}, \nu\right)=\left(f+\left(\tau \bullet f^{\prime}\right), \tau \nu\right)
\end{gathered}
$$

Theorem 3 [F.C]

Let (X, r) be a square-free partial solution, with $\operatorname{IM}(X, r)$.

$$
\begin{gathered}
\psi: \mathrm{IM}(X, r) \rightarrow A \bowtie \mathrm{I}_{X} \\
\psi(x)=\left(\delta_{x}, \sigma_{x}\right) ; \psi(g)=\left(\pi(g), \sigma_{g}\right)
\end{gathered}
$$

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem 2 [F.C] The restricted product $A \bowtie \mathrm{I}_{X}$ is defined by:

$$
\begin{gathered}
A \bowtie I_{X}=\left\{(f, \tau) \in A \times \mathrm{I}_{X} \mid \mathcal{R}_{\tau}=\mathcal{D}_{f}\right\} \\
(f, \tau)\left(f^{\prime}, \nu\right)=\left(f+\left(\tau \bullet f^{\prime}\right), \tau \nu\right)
\end{gathered}
$$

Theorem 3 [F.C]

Let (X, r) be a square-free partial solution, with $\operatorname{IM}(X, r)$.

$$
\begin{gathered}
\psi: \mathrm{IM}(X, r) \rightarrow A \bowtie \mathrm{I}_{X} \\
\psi(x)=\left(\delta_{x}, \sigma_{x}\right) ; \psi(g)=\left(\pi(g), \sigma_{g}\right)
\end{gathered}
$$

is an injective homomorphism of monoids.

Characterization of square-free partial solutions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem 2 [F.C] The restricted product $A \bowtie I_{X}$ is defined by:

$$
\begin{gathered}
A \bowtie I_{X}=\left\{(f, \tau) \in A \times \mathrm{I}_{X} \mid \mathcal{R}_{\tau}=\mathcal{D}_{f}\right\} \\
(f, \tau)\left(f^{\prime}, \nu\right)=\left(f+\left(\tau \bullet f^{\prime}\right), \tau \nu\right)
\end{gathered}
$$

Theorem 3 [F.C]

Let (X, r) be a square-free partial solution, with $\operatorname{IM}(X, r)$.

$$
\begin{gathered}
\psi: \operatorname{IM}(X, r) \rightarrow A \bowtie \mathrm{I}_{X} \\
\psi(x)=\left(\delta_{X}, \sigma_{x}\right) ; \psi(g)=\left(\pi(g), \sigma_{g}\right)
\end{gathered}
$$

is an injective homomorphism of monoids.
Furthermore, $\operatorname{Im}(\psi)$ is an inverse monoid.

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F
Fabienne
Chouraqui
QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Any subdivision of the interval $[0,1]$ obtained by repeatedly cutting intervals in half is called a dyadic subdivision.

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Any subdivision of the interval $[0,1]$ obtained by repeatedly cutting intervals in half is called a dyadic subdivision.

To each dyadic interval there corresponds a binary tree:

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson group F

2nd Results

Any subdivision of the interval $[0,1]$ obtained by repeatedly cutting intervals in half is called a dyadic subdivision.

To each dyadic interval there corresponds a binary tree:

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial

 solutions1st Results
Thomson group F

2nd Results

Any subdivision of the interval $[0,1]$ obtained by repeatedly cutting intervals in half is called a dyadic subdivision.

To each dyadic interval there corresponds a binary tree:

Dyadic subdivisions

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial

 solutions1st Results
Thomson group F

2nd Results

Any subdivision of the interval $[0,1]$ obtained by repeatedly cutting intervals in half is called a dyadic subdivision.

To each dyadic interval there corresponds a binary tree:

Introduction to Thomson group F (1)

Given \mathcal{D}, \mathcal{R}, with the same number of cuts, a dyadic rearrangement of $[0,1]$ is a picewise-linear $f:[0,1] \rightarrow[0,1]$ that sends each interval of \mathcal{D} linearly onto the corresponding interval of \mathcal{R}. The set of all dyadic rearrangements forms a group under composition: the Thompson group F.

Introduction to Thomson group F (1)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson group F 2nd Results

Given \mathcal{D}, \mathcal{R}, with the same number of cuts, a dyadic rearrangement of $[0,1]$ is a picewise-linear $f:[0,1] \rightarrow[0,1]$ that sends each interval of \mathcal{D} linearly onto the corresponding interval of \mathcal{R}. The set of all dyadic rearrangements forms a group under composition: the Thompson group F.

Dyadic rearrangements for x_{0} at left and x_{1} at right

Introduction to Thomson group $F(2)$

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial

solutions

1st Results
Thomson group F

2nd Results

The dyadic rearrangement and tree diagram for x_{0}

Introduction to Thomson group F (2)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson group F

2nd Results

The dyadic rearrangement and tree diagram for x_{0}

Introduction to Thomson group F 3

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial

 solutions1st Results
Thomson group F 2nd Results

The dyadic rearrangement and tree diagram for x_{1}

Introduction to Thomson group F 3

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson group F 2nd Results

The dyadic rearrangement and tree diagram for x_{1}

Introduction to Thomson group $F 3$

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson group F 2nd Results

The dyadic rearrangement and tree diagram for x_{1}

Several presentations of Thompson group F

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse monoids

Partial
solutions
1st Results
Thomson group F 2nd Results

The elements x_{0} and x_{1} generate Thompson's group F with:

Several presentations of Thompson group F

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson group F 2nd Results

The elements x_{0} and x_{1} generate Thompson's group F with:
$1\left\langle x_{0}, x_{1} \mid x_{2} x_{1}=x_{1} x_{3}, x_{3} x_{1}=x_{1} x_{4}\right\rangle$, where $x_{2}=x_{0} x_{1} x_{0}^{-1}$ and $x_{3}=x_{0}^{2} x_{1} x_{0}^{-2}, x_{4}=x_{0}^{3} x_{1} x_{0}^{-3}$.

Several presentations of Thompson group F

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson group F

The elements x_{0} and x_{1} generate Thompson's group F with:
$1\left\langle x_{0}, x_{1} \mid x_{2} x_{1}=x_{1} x_{3}, x_{3} x_{1}=x_{1} x_{4}\right\rangle$, where $x_{2}=x_{0} x_{1} x_{0}^{-1}$ and $x_{3}=x_{0}^{2} x_{1} x_{0}^{-2}, x_{4}=x_{0}^{3} x_{1} x_{0}^{-3}$.
$2\left\langle x_{0}, x_{1} \mid x_{2} x_{0}=x_{0} x_{3}, x_{3} x_{0}=x_{0} x_{4}\right\rangle$, where $x_{2}=x_{0}^{-1} x_{1} x_{0}$ and more generally $x_{n+1}=x_{n-1}^{-1} x_{n} x_{n-1}, 2 \leq n \leq 4$.

Several presentations of Thompson group F

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial solutions

1st Results
Thomson group F

2nd Results

The elements x_{0} and x_{1} generate Thompson's group F with:
$1\left\langle x_{0}, x_{1} \mid x_{2} x_{1}=x_{1} x_{3}, x_{3} x_{1}=x_{1} x_{4}\right\rangle$, where $x_{2}=x_{0} x_{1} x_{0}^{-1}$ and $x_{3}=x_{0}^{2} x_{1} x_{0}^{-2}, x_{4}=x_{0}^{3} x_{1} x_{0}^{-3}$.
$2\left\langle x_{0}, x_{1} \mid x_{2} x_{0}=x_{0} x_{3}, x_{3} x_{0}=x_{0} x_{4}\right\rangle$, where $x_{2}=x_{0}^{-1} x_{1} x_{0}$ and more generally $x_{n+1}=x_{n-1}^{-1} x_{n} x_{n-1}, 2 \leq n \leq 4$.

An infinite presentation of Thompson group F

$$
\begin{gathered}
\left\langle x_{0}, x_{1}, x_{2}, \ldots \mid x_{n} x_{k}=x_{k} x_{n+1}, k<n\right\rangle \\
x_{n}=x_{0} x_{n-1} x_{0}^{-1}=x_{0}^{n-1} x_{1} x_{0}^{-(n-1)}
\end{gathered}
$$

F as the structure group of a partial solution (1)

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse
monoids
Partial

solutions

1st Results
Thomson
group F
2nd Results

Definition of a partial solution

Let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Let $\sigma_{n}: X \rightarrow X$ and $\gamma_{n}: X \rightarrow X$ be the following partial functions.

F as the structure group of a partial solution (1)

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

Definition of a partial solution

Let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Let $\sigma_{n}: X \rightarrow X$ and $\gamma_{n}: X \rightarrow X$ be the following partial functions.

$$
\begin{aligned}
\sigma_{n}(k) & = \begin{cases}k & k \leq n \\
\text { not defined } & k=n+1 \\
k-1 & k \geq n+2\end{cases} \\
\gamma_{n}(k) & = \begin{cases}k & k \leq n-2 \\
\text { not defined } & k=n-1 \\
n & k=n \\
k+1 & k \geq n+1\end{cases}
\end{aligned}
$$

F as the structure group of a partial solution (1)

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial solutions

1st Results
Thomson
group F
2nd Results

Definition of a partial solution

Let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Let $\sigma_{n}: X \rightarrow X$ and $\gamma_{n}: X \rightarrow X$ be the following partial functions.

$$
\left.\begin{array}{c}
\sigma_{n}(k)= \begin{cases}k & k \leq n \\
\text { not defined } \\
k-1 & k=n+1 \\
k \geq n+2\end{cases} \\
\gamma_{n}(k)= \begin{cases}k & k \leq n-2 \\
\text { not defined } & k=n-1 \\
n & k=n \\
k+1 & k \geq n+1\end{cases} \\
\\
\mathcal{D}_{\sigma_{n}}=X \backslash\left\{x_{n+1}\right\} \\
\mathcal{D}_{\gamma_{n}}=X \backslash\left\{x_{n-1}\right\}
\end{array} \quad \begin{array}{l}
\mathcal{R}_{\sigma_{n}}=X \\
\mathcal{R}_{\gamma_{n}}=X \backslash\left\{x_{n-1}, x_{n+1}\right\}
\end{array}\right]
$$

F as the structure group of a partial solution $\mathcal{F}(2)$

The
Yang-Baxter equation and Thompson's
group F
Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Definition of a partial solution \mathcal{F}

Let define the following partial function:

$$
\begin{align*}
& r: X \times X \rightarrow X \times X \\
& r\left(x_{i}, x_{j}\right)=\left(x_{\sigma_{i}(j)}, x_{\gamma_{j}(i)}\right) \tag{3}
\end{align*}
$$

F as the structure group of a partial solution $\mathcal{F}(2)$

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Definition of a partial solution \mathcal{F}

Let define the following partial function:

$$
\begin{align*}
& r: X \times X \rightarrow X \times X \\
& r\left(x_{i}, x_{j}\right)=\left(x_{\sigma_{i}(j)}, x_{\gamma_{j}(i)}\right) \tag{3}
\end{align*}
$$

Let $\mathcal{D} \subset X \times X$ and $\mathcal{R} \subset X \times X$ be the domain and range of r.

F as the structure group of a partial solution $\mathcal{F}(2)$

The
Yang-Baxter equation and Thompson's
group F
Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Definition of a partial solution \mathcal{F}

Let define the following partial function:

$$
\begin{align*}
& r: X \times X \rightarrow X \times X \\
& r\left(x_{i}, x_{j}\right)=\left(x_{\sigma_{i}(j)}, x_{\gamma_{j}(i)}\right) \tag{3}
\end{align*}
$$

Let $\mathcal{D} \subset X \times X$ and $\mathcal{R} \subset X \times X$ be the domain and range of r.

Lemma

(X, r) is a square-free, non-degenerate, involutive partial set-theoretic solution, denoted by \mathcal{F}.

F as the structure group of a partial solution $\mathcal{F}(3)$

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial

solutions

1st Results
Thomson
group F
2nd Results

Theorem [F.C]
Let $r: \mathcal{D} \rightarrow \mathcal{R}$ and \mathcal{F} as defined above. Then

F as the structure group of a partial solution $\mathcal{F}(3)$

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Theorem [F.C]
Let $r: \mathcal{D} \rightarrow \mathcal{R}$ and \mathcal{F} as defined above. Then
$1 G(X, r)$, the structure group of \mathcal{F}, is isomorphic to the Thompson group F.

F as the structure group of a partial solution $\mathcal{F}(3)$

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE

Inverse
monoids
Partial
solutions
1st Results
Thomson
group F
2nd Results

Theorem [F.C]
Let $r: \mathcal{D} \rightarrow \mathcal{R}$ and \mathcal{F} as defined above. Then
$1 G(X, r)$, the structure group of \mathcal{F}, is isomorphic to the Thompson group F.
$2 \operatorname{IM}(X, r)$, the structure inverse monoid of \mathcal{F}, embeds into the inverse monoid $A \bowtie \mathrm{I}_{X}$, where A is the commutative inverse monoid $\left\{f: \mathcal{D}_{f} \rightarrow \mathbb{Z} \mid \mathcal{D}_{f} \subseteq X\right\}$, with pointwise operation, and I_{X} is the inverse symmetric monoid.

Some remarks to conclude

The
Yang-Baxter equation and Thompson's group F

Fabienne Chouraqui

QYBE

Inverse monoids

Partial solutions

1st Results
Thomson
group F 2nd Results

■ $G(X, r)$, with X finite, is a Garside group. Garside groups are torsion-free and biautomatic. F is also torsion-free, but it is not known wether it is automatic.

Some remarks to conclude

■ $G(X, r)$, with X finite, is a Garside group. Garside groups are torsion-free and biautomatic. F is also torsion-free, but it is not known wether it is automatic.
■ $G(X, r)$, with X finite, is solvable. F^{\prime} is simple, so $F^{\prime \prime}=F^{\prime}$, and F is not nilpotent, nor solvable.

Some remarks to conclude

■ $G(X, r)$, with X finite, is a Garside group. Garside groups are torsion-free and biautomatic. F is also torsion-free, but it is not known wether it is automatic.
■ $G(X, r)$, with X finite, is solvable. F^{\prime} is simple, so $F^{\prime \prime}=F^{\prime}$, and F is not nilpotent, nor solvable.

- The centre of the structure group of an indecomposable solution (X, r), with X finite, is cyclic. $Z(F)=\{1\}$.

Some remarks to conclude

■ $G(X, r)$, with X finite, is a Garside group. Garside groups are torsion-free and biautomatic. F is also torsion-free, but it is not known wether it is automatic.
■ $G(X, r)$, with X finite, is solvable. F^{\prime} is simple, so $F^{\prime \prime}=F^{\prime}$, and F is not nilpotent, nor solvable.

- The centre of the structure group of an indecomposable solution (X, r), with X finite, is cyclic. $Z(F)=\{1\}$.
■ $G(X, r)$, with X finite, is a Bieberbach group, As far as we know, there is no result of this kind for F.

Some remarks to conclude

■ $G(X, r)$, with X finite, is a Garside group. Garside groups are torsion-free and biautomatic. F is also torsion-free, but it is not known wether it is automatic.
■ $G(X, r)$, with X finite, is solvable. F^{\prime} is simple, so $F^{\prime \prime}=F^{\prime}$, and F is not nilpotent, nor solvable.

- The centre of the structure group of an indecomposable solution (X, r), with X finite, is cyclic. $Z(F)=\{1\}$.
- $G(X, r)$, with X finite, is a Bieberbach group, As far as we know, there is no result of this kind for F.
- The quotient group F / F^{\prime} is isomorphic to \mathbb{Z}^{2}, and so any proper quotient of F is abelian. This is not necessarily the case for the structure group of a solution.

Some remarks to conclude

■ $G(X, r)$, with X finite, is a Garside group. Garside groups are torsion-free and biautomatic. F is also torsion-free, but it is not known wether it is automatic.
■ $G(X, r)$, with X finite, is solvable. F^{\prime} is simple, so $F^{\prime \prime}=F^{\prime}$, and F is not nilpotent, nor solvable.

- The centre of the structure group of an indecomposable solution (X, r), with X finite, is cyclic. $Z(F)=\{1\}$.
- $G(X, r)$, with X finite, is a Bieberbach group, As far as we know, there is no result of this kind for F.
- The quotient group F / F^{\prime} is isomorphic to \mathbb{Z}^{2}, and so any proper quotient of F is abelian. This is not necessarily the case for the structure group of a solution.
- What can be said about the other Thompson's groups F, T, V, with $F \subset T \subset V$?

The end

The
Yang-Baxter equation and Thompson's group F

Fabienne
Chouraqui

QYBE
Inverse monoids

Partial
solutions
1st Results
Thomson
group F
2nd Results

Thank you!

