Unexpected applications of homotopical algebra to knot theory

(Honest title: Homology of permutation racks)

Victoria LEBED, University of Caen Normandy (France)
 Joint work with Markus SZYMIK, NTNU (Norway)

Your computer, December 2020

I. From topology to algebra

$$
\mathrm{a} \triangleleft \mathrm{~b}=\phi(\mathrm{a})
$$

II. From algebra to topology

A challenge (for those who know rack homology better than I do):

Compute the full rack homology of the permutation rack

$$
(S, a \triangleleft b=\phi(a)) .
$$

How topologists discovered self-distributivity

D. Joyce \& S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation \triangleleft.
(S, \triangleleft)-colourings for braid diagrams:

cf. Wirtinger presentation of $\pi_{1}\left([0,1] \times \mathbb{R}^{2} \backslash \beta\right)$:

D. Joyce \& S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation \triangleleft.
(S, \triangleleft)-colourings for braid diagrams:

2. Braids and self-distributivity

$\operatorname{End}\left(\mathrm{S}^{n}\right) \leftarrow \mathrm{B}_{n}^{+}$	RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$	shelf
$\operatorname{Aut}\left(S^{n}\right) \leftarrow \mathrm{B}_{\mathrm{n}}$	\& RII	$\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a} \triangleleft \mathrm{b}$ is bijective	rack
$\mathrm{S} \hookrightarrow\left(\mathrm{S}^{n}\right)^{\mathrm{B}_{n}}$	\& RI	$\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$	quandle

S	$\mathrm{a} \triangleleft \mathrm{b}$	$(\mathrm{S}, \triangleleft)$ is a	in braid theory
$\mathbb{Z}\left[\mathrm{t}^{ \pm 1]}\right.$ Mod	$\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$	quandle	Burau: $\mathrm{B}_{\mathrm{n}} \rightarrow \mathrm{GL}_{\mathrm{n}}\left(\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]\right)$
group	$\mathrm{b}^{-1} \mathrm{ab}$	quandle	Artin: $\mathrm{B}_{\mathrm{n}} \hookrightarrow$ Aut $\left(\mathrm{F}_{\mathrm{n}}\right)$
twisted linear quandle		Lawrence-Krammer-Bigelow	
\mathbb{Z}	$\mathrm{a}+1$	rack	$\lg (w), l k_{i, j}$
free shelf			Dehornoy: order on B_{n}

$3 /$ Knots and self-distributivity
(S, ব)-colourings for knot diagrams:

$$
\mathrm{a} \triangleleft \mathrm{~b}=\mathrm{c}, \quad \mathrm{~b} \triangleleft \mathrm{c}=\mathrm{a}, \quad \mathrm{c} \triangleleft \mathrm{a}=\mathrm{b}
$$

Proposition: (S, \triangleleft) is a quandle \Longrightarrow
$\#\{(S, \triangleleft)$-colourings of diagrams $\}$ is a knot invariant.
Example: $\left(\mathbb{Z}_{3}, \mathrm{a} \triangleleft \mathrm{b}=2 \mathrm{~b}-\mathrm{a}\right)$

3 colourings

9 colourings
(S, $\triangleleft)$-colourings for knot diagrams:

$$
\mathrm{a} \triangleleft \mathrm{~b}=\mathrm{c}, \quad \mathrm{~b} \triangleleft \mathrm{c}=\mathrm{a}, \quad \mathrm{c} \triangleleft \mathrm{a}=\mathrm{b}
$$

Theorem (Joyce \& Matveev '82):

- $Q(K)=$ fundamental quandle of K
(a weak universal knot invariant).

4

diagrams:
colorings:
coloring sets:

D	$\substack{\mathrm{R} \text {-move } \\ \mathfrak{C} \\ \rightsquigarrow}$	D^{\prime}
\mathfrak{C}	C^{\prime}	

$\mathrm{Col}_{s, \triangleleft}(\mathrm{D}) \quad \stackrel{1: 1}{\longleftrightarrow} \quad \mathrm{Col}_{S, \triangleleft}\left(\mathrm{D}^{\prime}\right)$

Counting invariants: \# $\operatorname{Col}_{S, \triangleleft}(\mathrm{D})=$ Col $_{\mathrm{S}, \triangleleft}\left(\mathrm{D}^{\prime}\right)$.

Question: Extract more information?

$$
\begin{aligned}
\omega(\mathrm{C}) & =\omega\left(\mathrm{C}^{\prime}\right) \\
& \Downarrow \\
\left\{\omega(\mathrm{C}) \mid \mathcal{C} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})\right\} & =\left\{\omega\left(\mathrm{C}^{\prime}\right) \mid \mathfrak{C}^{\prime} \in \operatorname{Col}_{\mathrm{s}, \triangleleft}\left(\mathrm{D}^{\prime}\right)\right\} .
\end{aligned}
$$

Answer (Carter-Jelsovsky-Kamada-Langford-Saito '03): State-sums over crossings, and Boltzmann weights:

$$
\phi: S \times S \rightarrow \mathbb{Z}_{\mathrm{m}} \quad \sim \quad \omega_{\phi}(\mathcal{C})=\sum_{\substack{b \\ a}} \pm \phi(a, b)
$$

Conditions on ϕ :

$\underset{\sim}{\mathrm{RI}}$

Quandle cocycle invariants: $\left\{\omega_{\phi}(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})\right\}$.

$$
\phi: S \times S \rightarrow \mathbb{Z}_{\mathfrak{m}} \quad \sim \quad \omega_{\phi}(\mathcal{C})=\sum_{\substack{ \\a}} \pm \phi(a, b)
$$

Quandle cocycle invariants: $\left\{\omega_{\phi}(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{S, \triangleleft}(\mathrm{D})\right\}$.
Example: $\phi=0 \quad \sim \quad$ counting invariants.
Quandle cocycle invariants \supseteq counting invariants.
Conjecture (Clark-Saito-...):
Finite quandle cocycle invariants distinguish all knots.
Generalisation: $K^{n} \hookrightarrow \mathbb{R}^{n+2}$ and $\phi: S^{\times(n+1)} \rightarrow \mathbb{Z}_{\mathrm{m}}$.
Wish:
$d^{n+1} \phi=0 \Longrightarrow \phi$ refines counting invariants for n-knots, $\phi=d^{n} \psi \Longrightarrow$ the refinement is trivial.

5. The desired cohomology theory

Fenn et al. ' 95 \& Carter et al. '03 \& Graña '00:
Shelf $(S, \triangleleft) \&$ abelian group $X \sim$ cochain complex

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Map}\left(S^{\times k}, X\right), \\
& \begin{aligned}
\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
& \left.-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right)
\end{aligned}
\end{aligned}
$$

\sim Rack cohomology $H_{R}^{k}(S, X)=\operatorname{Ker} d_{R}^{k} / \operatorname{Im} d_{R}^{k-1}$.
Quandle $(S, \triangleleft) \&$ abelian group $X \sim$ sub-complex of $\left(C_{R}^{k}, d_{R}^{k}\right)$:

$$
C_{Q}^{k}(S, X)=\left\{f: S^{\times k} \rightarrow X \mid f(\ldots, a, a, \ldots)=0\right\}
$$

\sim Quandle cohomology $\mathrm{H}_{\mathrm{Q}}^{\mathrm{k}}(\mathrm{S}, \mathrm{X})$.

This is what we were looking for! This construction yields:
\checkmark Boltzmann weights for constructing higher knot invariants (powerfull and easy to compute);
\checkmark an important class of braided vector spaces giving nice Hopf algebras;
\checkmark a parametrization of abelian rack extensions.

Problem: Full rack/quandle (co)homology of a rack is hard to compute.
We will give a partial overview of available tools.

6/ Topological realization

Fenn-Rourke-Sanderson '95:
Shelf $(S, \triangleleft) \leadsto$ rack (= classifying) space $B(S)$. It is a CW-complex: $\operatorname{deg} 0: *$ $\operatorname{deg} 1: * \xrightarrow{\mathrm{a}} *$
$\operatorname{deg} 3$:

$\operatorname{deg} n: \coprod_{S \times n}[0,1]^{n}$

The coloring continues uniquely to other edges of $[0,1]^{n}$.

Boundaries: usual topological ones.

$$
\mathrm{H}_{\mathrm{R}}^{\bullet}(\mathrm{S}, \mathrm{X}) \cong \mathrm{H}^{\bullet}(\mathrm{B}(\mathrm{~S}), \mathrm{X})
$$

Nosaka '11: To get quandle cohomology, add 3-dimensional cells bounding

Proposition: $\pi_{1}(\mathrm{~B}(\mathrm{~S})) \cong \mathrm{As}(\mathrm{S})$,
where $\operatorname{As}(S):=\langle S \mid a b=b(a \triangleleft b)\rangle$ is the associated group of (S, \triangleleft).

Computations (Fenn-Rourke-Sanderson '07):

1) Trivial quandle $T_{n}=(\{1, \ldots, n\}, a \triangleleft b=a): \quad B\left(T_{n}\right) \cong \Omega\left(\vee_{n} \mathbb{S}^{2}\right)$.
2) Free rack on n generators $F R_{n}: \quad B\left(F R_{n}\right) \cong \vee_{n} \mathbb{S}^{1}$.

Rack cohomology vs group cohomology

The associated group of (S, \triangleleft) :

$$
\operatorname{As}(\mathrm{S}):=\langle\mathrm{S} \mid \mathrm{ab}=\mathrm{b}(\mathrm{a} \triangleleft \mathrm{~b})\rangle
$$

Theorem (Joyce '82): One has a pair of adjoint functors

$$
\text { As : Rack } \rightleftarrows \text { Group : Conj . }
$$

Theorem (García Iglesias \& Vendramin '16): For a finite indecomposable quandle S,

$$
H_{R}^{2}(S, X) \cong X \times \operatorname{Hom}(N(S), X)
$$

Here $N(S)$ is a finite group (the stabilizer of an $a_{0} \in S$ in $\left.[\operatorname{As}(S), \operatorname{As}(S)]\right)$.

Theorem (Fenn-Rourke-Sanderson '95): There is a graded algebra morphism $\mathrm{HH}^{\bullet}(\operatorname{As}(S), X) \rightarrow \mathrm{H}_{\mathrm{R}}^{\bullet}(\mathrm{S}, \mathrm{X})$.

Theorem (Etingof-Graña'03): If (S, \triangleleft) is a rack and $\# \operatorname{lnn}(S) \in X^{*}$, then

$$
H_{R}^{k}(S, X) \cong X^{r^{k}}
$$

$\checkmark \operatorname{Orb}(S)=\{$ orbits of S w.r.t. $a \sim a \triangleleft b\}, r=\# \operatorname{Orb}(S)$;
$\checkmark \operatorname{lnn}(S)$ is the subgroup of $\operatorname{Aut}(S)$ generated by $t_{b}: a \mapsto a \triangleleft b$.

Bad news: $\operatorname{lf} \# \operatorname{lnn}(S) \in X^{*}$, then
quandle cocycle invariants = coloring invariants + linking numbers.
Hope: Look at $X=\mathbb{Z}_{p}$, or at the p-torsion of $H_{R}^{k}(S, \mathbb{Z})$, where $p \mid \# \operatorname{Inn}(S)$.
It works, and yields interesting invariants!

Theorem (Szymik '19): Quandle cohomology is a Quillen cohomology.

Applications:

\checkmark excision isomorphisms;
\checkmark Mayer-Vietoris exact sequences.

A permutation ϕ on a set $S \sim \operatorname{permutation} \operatorname{rack}\left(S, a \triangleleft_{\phi} b=\phi(a)\right)$.
Theorem (L.-Szymik '20): $\mathrm{H}_{\mathrm{k}}^{\mathrm{R}}\left(\left(\mathrm{S}, \triangleleft_{\phi}\right), \mathrm{X}\right) \cong \mathrm{X}^{\beta_{k}} \quad$ where
$\checkmark \beta_{0}=1, \beta_{1}=r, \beta_{n+2}=(r-1) \beta_{n+1}+r_{f} \beta_{n}, \quad n \geqslant 0$;
$\checkmark \mathrm{r}=\#\{$ orbits of $\phi\}, \quad \mathrm{r}_{\mathrm{f}}=\#\{$ finite orbits of $\phi\}$.
Remark: $\mathrm{H}_{\bullet}^{\mathrm{R}}\left(\mathrm{S}, \triangleleft_{\phi}\right)$ contains more information than $\mathrm{As}\left(\mathrm{S}, \triangleleft_{\phi}\right)$.
Sketch of proof:
Step 1 Explicit computations for free permutation racks
(= all orbits are infinite).

Trick: $\mathrm{H}_{\mathrm{R}}^{\mathrm{k}}=\operatorname{Ker} \mathrm{d}_{\mathrm{R}}^{k} / \operatorname{Im} \mathrm{d}_{\mathrm{R}}^{k-1}$
study chains up to boundaries, then restrict to cycles (usually: determine cycles, then mod out the boundaries).

Step 2 Choose a simplicial resolution by free permutations $F_{\bullet} \rightarrow S$ \leadsto a double complex $E_{p, q}^{0}=C_{q}^{R}\left(F_{p}\right)$
\sim two spectral sequences with the same target.
Step 3 Computations in the spectral sequences:
1st $S S: E_{p, q}^{\infty} \cong \begin{cases}H_{q}^{R}(S) & \text { if } p=0, \\ 0 & \text { if } p \neq 0 .\end{cases}$
2nd SS: $\mathrm{E}_{\bullet, \mathrm{q}}^{2} \cong \bar{H}_{\bullet}(\mathrm{S} / / \phi)^{\otimes(q-1)} \otimes \mathrm{H}_{\bullet}(\mathrm{S} / / \phi)$,
where $S / / \phi$ is the homotopy orbit space:

$S / / \phi=r_{f}$ circles $\bigsqcup r-r_{f}$ lines
Step 4 For the 2nd $S S$, show that $E^{\infty}=E^{2}$.
For this, find enough independent elements in $\mathrm{H}_{\mathrm{q}}^{\mathrm{R}}(\mathrm{S})$.

