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I. From topology to algebra II. From algebra to topology



0 Parallel session

A challenge (for those who know rack homology be�er than I do):

Compute the full rack homology of the permutation rack

(S , a � b = φ(a)).



1 How topologists discovered self-distributivity

D. Joyce & S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation �.

(S,�)-colourings for

braid diagrams: a

b

b

a � b

a

b

b

a � b

cf. Wirtinger

presentation

of π1([0, 1] × R2 \ β):

a

b

c

c

b � c

(a � b) � c
RIII
∼

a

b

c

c

b � c

(a � c) � (b � c)



D. Joyce & S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation �.

(S,�)-colourings for

braid diagrams: a

b

b

a � b

a

b

b

a � b

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c) shelf

Aut(Sn)← Bn & RII ∀b, a 7→ a � b is bijective rack

S →֒ (Sn)Bn & RI a � a = a quandle

a 7→ (a, . . . , a)

β aβa



2 Braids and self-distributivity

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c) shelf

Aut(Sn)← Bn & RII ∀b, a 7→ a � b is bijective rack

S →֒ (Sn)Bn & RI a � a = a quandle

a 7→ (a, . . . , a)

S a � b (S,�) is a in braid theory

Z[t±1]Mod ta + (1− t)b quandle Burau: Bn → GLn(Z[t
±])

group b−1ab quandle Artin: Bn →֒ Aut(Fn)

twisted linear quandle Lawrence–Krammer–Bigelow

Z a+ 1 rack lg(w), lki,j
free shelf Dehornoy: order on Bn



3 Knots and self-distributivity

(S,�)-colourings for

knot diagrams:

ab

c
y x � y

x y

a � b = c, b � c = a, c � a = b

Proposition: (S,�) is a quandle =⇒
# { (S,�)-colourings of diagrams } is a knot invariant.

Example: (Z3, a � b = 2b− a)

3 colourings 9 colourings



(S,�)-colourings for

knot diagrams:

ab

c
y x � y

x y

a � b = c, b � c = a, c � a = b

Theorem (Joyce & Matveev ’82):

• #ColS,�(D) = #HomQuandle(Q(K), S),

• Q(K) = fundamental quandle of K

(a weak universal knot invariant).



4 The homology comes in
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b � c

(a � b) � c
RIII
∼

a

b

c

c

b � c

(a � c) � (b � c)

diagrams: D
R-move
 D ′

colorings: C  C ′

coloring sets: ColS,�(D)
1:1
←→ ColS,�(D

′)

Counting invariants: # ColS,�(D) = #ColS,�(D
′).

�estion: Extract more information?

ω(C) = ω(C ′)

⇓
{
ω(C)

∣∣ C ∈ ColS,�(D)
}
=

{
ω(C ′)

∣∣C ′ ∈ ColS,�(D
′)
}
.



Answer (Carter–Jelsovsky–Kamada–Langford–Saito ’03): State-sums over

crossings, and Boltzmann weights:

φ : S× S→ Zm ; ωφ(C) =
∑

b

a

±φ(a, b)

Conditions on φ:
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b

c c

b

a � b c

b

φ(a, b)+φ(a � b, c)+
✘
✘
✘✘φ(b, c) =

RIII
∼

a

b

c

a

c a � c

b � c

✘
✘
✘✘φ(b, c)+φ(a, c)+φ(a � c, b � c)

a

a
a

φ(a, a) =

RI
∼

a

a

0

�andle cocycle invariants:
{
ωφ(C)

∣∣C ∈ ColS,�(D)
}
.



φ : S× S→ Zm ; ωφ(C) =
∑

b

a

±φ(a, b)

�andle cocycle invariants:
{
ωφ(C)

∣∣C ∈ ColS,�(D)
}
.

Example: φ = 0 ; counting invariants.

�andle cocycle invariants ! counting invariants.

Conjecture (Clark–Saito–. . . ):

Finite quandle cocycle invariants distinguish all knots.

Generalisation: Kn →֒ Rn+2 and φ : S×(n+1) → Zm.

Wish:

dn+1φ = 0 =⇒ φ refines counting invariants for n-knots,

φ = dnψ =⇒ the refinement is trivial.



5 The desired cohomology theory

Fenn et al. ’95 & Carter et al. ’03 & Graña ’00:

Shelf (S,�) & abelian group X ; cochain complex

Ck
R (S,X) = Map(S×k, X),

(dkR f)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i−1(f(a1, . . . , âi, . . . , ak+1)

− f(a1� ai, . . . , ai−1� ai, ai+1, . . . , ak+1))

; Rack cohomology Hk
R (S,X) = KerdkR / Imd

k−1
R .

�andle (S,�) & abelian group X ; sub-complex of (Ck
R , d

k
R ):

Ck
Q (S,X) = { f : S×k → X | f(. . . , a, a, . . .) = 0 }

; �andle cohomology Hk
Q (S,X).



This is what we were looking for! This construction yields:

✓ Boltzmann weights for constructing higher knot invariants

(powerfull and easy to compute);

✓ an important class of braided vector spaces giving nice Hopf algebras;

✓ a parametrization of abelian rack extensions.

Problem: Full rack/quandle (co)homology of a rack is hard to compute.

We will give a partial overview of available tools.



6 Topological realization

Fenn–Rourke–Sanderson ’95:

Shelf (S,�) ; rack (= classifying) space B(S). It is a CW-complex:

deg 0: ∗ deg 1: ∗
a

−→∗

deg 2:

a

b

b

a � b

deg 3:

a

b

c

c
b

a�b

(a�b)�c

c
b�c

a

b

c

c

a�c

(a�c)�(b�c)

c

b�c

b�c



degn:
∐

S×n

[0, 1]n a1

a2
a3
· · ·

an

The coloring continues uniquely to other edges of [0, 1]n .

Boundaries: usual topological ones.

H•
R (S,X)

∼= H•(B(S), X)

Nosaka ’11: To get quandle cohomology, add 3-dimensional cells bounding

a

a

a

a



Proposition: π1(B(S)) ∼= As(S) ,

where As(S) := 〈S |ab = b (a � b)〉 is the associated group of (S,�).

a

b

b

a � b

Computations (Fenn–Rourke–Sanderson ’07):

1) Trivial quandle Tn = ({1, . . . , n} , a � b = a): B(Tn) ∼= Ω(∨nS
2).

2) Free rack on n generators FRn: B(FRn) ∼= ∨nS
1.



7 Rack cohomology vs group cohomology

The associated group of (S,�):

As(S) := 〈S |ab = b (a � b)〉

Theorem (Joyce ’82): One has a pair of adjoint functors

As : Rack⇄ Group : Conj .

Theorem (García Iglesias & Vendramin ’16): For a finite indecomposable

quandle S,

H2
R (S,X)

∼= X× Hom(N(S), X).

Here N(S) is a finite group (the stabilizer of an a0 ∈ S in [As(S),As(S)]).

Theorem (Fenn–Rourke–Sanderson ’95): There is a graded algebra

morphism HH•(As(S), X)→ H•
R (S,X).



8 Be�i numbers

Theorem (Etingof–Graña ’03): If (S,�) is a rack and # Inn(S) ∈ X∗, then

Hk
R (S,X)

∼= Xrk

✓ Orb(S) = { orbits of S w.r.t. a ∼ a � b}, r = #Orb(S);

✓ Inn(S) is the subgroup of Aut(S) generated by tb : a 7→ a � b.

Bad news: If # Inn(S) ∈ X∗, then

quandle cocycle invariants = coloring invariants + linking numbers.

Hope: Look at X = Zp, or at the p-torsion of Hk
R (S,Z), where p | # Inn(S).

It works, and yields interesting invariants!



9 Homotopical tools: framework

Theorem (Szymik ’19): �andle cohomology is a �illen cohomology.

Applications:

✓ excision isomorphisms;

✓ Mayer–Vietoris exact sequences.



10 Homotopical tools: example

A permutation φ on a set S ; permutation rack (S , a �φ b = φ(a)).

Theorem (L.–Szymik ’20): HR

k((S,�φ), X) ∼= Xβk where

✓ β0 = 1, β1 = r, βn+2 = (r − 1)βn+1 + rfβn, n > 0;

✓ r = # { orbits of φ }, rf = # { finite orbits of φ }.

Remark: HR
•(S,�φ) contains more information than As(S,�φ).

Sketch of proof:

Step 1 Explicit computations for free permutation racks

(= all orbits are infinite).

Trick: Hk
R = KerdkR /Imd

k−1
R

study chains up to boundaries, then restrict to cycles

(usually: determine cycles, then mod out the boundaries).



Step 2 Choose a simplicial resolution by free permutations F• → S

; a double complex E0p,q = CR
q(Fp)

; two spectral sequences with the same target.

Step 3 Computations in the spectral sequences:

1st SS: E∞p,q
∼=

{
HR

q(S) if p = 0,

0 if p 6= 0.
.

2nd SS: E2•,q
∼= H•(S//φ)

⊗(q−1) ⊗H•(S//φ),

where S//φ is the homotopy orbit space:

a φ(a)φ−1(a)

S//φ = rf circles
⊔
r− rf lines

Step 4 For the 2nd SS, show that E∞ = E2.

For this, find enough independent elements in HR
q(S).
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