
ITERATES OF FRACTIONAL ORDER 

RUFUS ISAACS 

1. Introduction. The body of this paper is a complete answer to the 
following question: 

Let E be any space whatever. g(x) is a function1 mapping E into E. When 
does there exist a function/(x), of the same type, such that 

(1) / ( / (x) ) = g(x) ( * € £ ) ? 

This problem typifies the general one of iteration. Let gk(x) be the &th 
order iterate of g [i.e. g°(x) = x, gk+1(x) = g(gk(x))]. The iteration problem is 
that of attaching a consistent meaning to this expression for fractional k (in 
the sense of preserving the additive law of exponents). A n / satisfying (1) is 
thus g1/2(x). By ideas similar to those discussed herein, we can find the most 
general g1/m and then by iterating it, the most general iterate of any rational 
order. Without introducing continuity, this is as far as it is possible to go. 
We confine ourselves to the case of k = 1/2 to avoid oppressive detail; the 
generalization to k = 1/m is indicated later. 

The iteration problem has received attention for many years, alone or as 
part of another topic (functional equations, fractional derivatives, the tri-
operational algebra of Menger [1], etc.). Some of these applications require 
subsidiary conditions on the functions (continuity, differentiability, etc.). We 
deal with the general problem without such side conditions; thus our work 
might be called combinatorial. The problem with a side condition such as 
continuity appears highly interesting. 

In all the literature we have encountered, the general problem is approached 
in but one way—through the Abel function. The idea here is to ascertain 
a numerically valued function <t> on E satisfying 

*(g(*)) = *(*) + 1. 

Then iterates of all orders are obtained at once by 

gk(x) = ^ M * ) + *). 

We show later that in a widespread class of cases, a <£ does not exist. Even 
when it does, its inverse may not exist. Yet iterates of some or all fractional 
orders may exist. The non-existence of <j> may hold even when we have 
continuity with respect to both x and &, as we shall show below. 

Received April 12, 1949. 
*If g is not defined for all of E, it suffices that our later criterion hold for some extension of g 

which is. If the range and domain of g are distinct we can thus take E to be their union. 
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For the Abel function approach in the complex number domain see the 
papers by Schwarzschild, Chayoth, and Koenigs [2]. For the real domain, 
Lyche [3] gives existence conditions for <j> and continuous <j> by methods some
what akin to ours. Bôdewadt [4] treats the case of a fully differentiable 0 
(real domain). Hadamard [5] summarizes two recent contributions. 

Our interest in this question arose from the following problem propounded 
by Menger. Let E be Ri and g(x) = a + bx. There is obviously a linear 
solution to (1) when b ^ 0, namely f(x) = a/(l + b*) + $x. Do solutions 
exist when b < 0? The question is answered below. 

The text will be clearer if we outline our method first. 
An orbit (defined precisely later) is a subset of E whose elements are linked 

by the operation g. We can represent one graphically as in Figure 1 where 
the dots represent elements of E and the arrows show the course of g. 

• > 9 > » > ^ » »• • > » • « " 

FIGURE 1 

The present idea consists of constructing the orbits of / from those of g. 
Thus in Figure 2 we see two orbits with respect to g united so as to give one 
with respect to / . The dashed arrows show the course of / ; the truth of (1) 
may be verified by noting that following two consecutive dashed arrows is 
equivalent to following one solid one. 

This kind of construction can sometimes be carried out utilizing only a 
single g-orbit as in Figure 3. 

We will show (Theorem 1) that these two instances typify the most general 
situation possible. The problem then reduces essentially to two questions: 
When can two distinct g-orbits be "mated" (as in Figure 2) to produce one for ft 
When can a single g-orbit also be an f-orbit (as in Figure 3)? which are answered 
by Theorems 3 and 4. 

2. Orbits. Consider the following relation between the members x,y of E: 
There exist non-negative integers m, n such that 

(2) gm(x) = gn(y). 

This relation is rst2 ; the classes into which it divides E, in the customary way, 
are called orbits.z The orbit containing x will be denoted by L[x;g\. 

2Reflexive, symmetric and transitive. 
3This concept appears in Lyche [3], where he attributes it to a suggestion of Kuratowski. 

He uses the term class; in a previous abstract of this work we used linkage. The term orbit 
appears in Whyburn [6]. 
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A set 

(3) xi, . . . , xn 

such that g(xi) = #2, . . . , g{xn) = xi will be called a cycle (n-cycle). 

LEMMA 1. An orbit contains at most one cycle. 

For let x and y be elements which belong to the same orbit but to two dis
tinct cycles; (2) holds. The element on both its sides belongs to both cycles. 
The cycles, having a common element, are identical. 

FIGURE 2 

An orbit containing a cycle (of n elements) will be called cyclic {n-cyclic). 
Let C be the cycle of a cyclic orbit L. An element x0 will be called a leader if 

XQ 6 L — C, g{x0) £ C. 

For a particular leader x0 the subset of all y of L such that for some non-
negative integer n 

(4) gn{y) = xo 

will be called a branch or more precisely a branch from g{x0). 

LEMMA 2. TT̂ e branches constitute an aliquot, disjoint subdivision of L — C 
For each y, the n of (4) is unique. 

Let 3/ Ç L - C; (2) holds for y and any x which £ C. Let ni be the smallest 
n such that gw(y) Ç C; ^1 > 0. Putw = m — 1. Then gn(y) = x0 is a leader. 
This Xo and w are unique, for suppose the existence of a second pair, i.e. 

gn\y) = x'o 

and say n ^ w'. Then x0 = gn(y) = gn~n,(xr
0). Now n — n' > 0 is impos

sible as this implies x0 € C. Then w = w', x0 = #'0. 
Any union of branches from the same z G C is called a branch cluster {from z). 
The subset of all y of a branch 5 for which the n of (4) is even (odd) is 

called the even {odd) part of B. 
The following two operations concern only the structural properties of orbits, 

i.e. those invariant under isomorphisms (the term is used in the expected 
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sense of a biunique, ^-preserving correspondence). In other words, we admit 
orbits whose elements are abstract. 

Consider the subsets X of an orbit L which are inverse images of single 
elements of E under g. (X is the set of x Ç L such that g(x) = y for some 
fixed y £ L.) Divide each such X into a system of aliquot, disjoint subsets 
Xa> Identify the elements of each Xa into a single element, thus obtaining a 
new orbit Z/. For Z/, g is defined by g(Xa) = g(x) where x G Xa; if g(;y) 
= x £ Xa then for Z/, g(3/) = Xa. U will be called a contraction of L. For 

FIGURE 3 

a cyclic orbit we may apply the idea to its branches. We include the possi
bility of contracting a branch cluster into a branch by identifying all its 
leaders. 

By a curtailment of an orbit or branch L is meant the new orbit or branch 
arising when some of the elements x of L for which there is no y such that 
g {y) = x are removed from L. (For the unremoved elements, g is unchanged.) 

3. The existence conditions. 

THEOREM 1. If / , g satisfy (1), each orbit with respect to f is the union of 
two {possibly identical) orbits with respect to g. More precisely: 

(5) L(x;f) = L(x; g) W L( / (x) ; g). (* € E) 

Let y Ç L(x;f). Then, for suitable nt, n} 

(6) r(y) =fn(x) 
and also 

(7) /-+i(y) = / " + 1 (x ) . 

One of (6), (7) has an even superscript on the left; let it be 

/ « ( y ) =fti+.(x)t « = Oor 1 
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which can also be written 

gk(y) = gj(f'(x)) 

so that y £ the right side of (5). 

On the other hand, if y GL(x; g) or L(f(x) ; g), (2) can be written 

fn(y) = fm(x) orfm+l(x). 

Two distinct orbits capable of being paired together in the manner mentioned 
in Theorem 1 are said to be mateable. An orbit capable of being paired with 
itself will be said to be self-mateable. 

The existence criterion for / is now clear. 
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FIGURE 4 

THEOREM 2. A necessary and sufficient condition for f to exist is that the set 
of orbits with respect to g can be divided into three aliquot, disjoint subsets, such 
that two can be put into a biunique correspondence with mateable correspondents, 
while the third consists of self-mateable orbits. 

It remains to find criteria for mateability and self-mateability. 

THEOREM 3. A necessary and sufficient condition for two distinct orbits to be 
mateable is that a contraction of one be isomorphic to a curtailment of the other. 

Sufficiency. Let L\, L2 be orbits such that a contraction of Li is isomorphic 
to a curtailment Z/2 of L2. If xÇLi then a subset of Lif containing x, is paired 
by the isomorphism to y^Lf

2; define/(x) =y and f(y) =g(x). If yQ.Li—L\, let 
f(y) be any element of L\ which is mapped b y / into g(y) (possible, as g(y) Ç Z/2). 
The so-defined / satisfies (1). 

Necessity. Let Li, L2 be the orbits. Identifying the x of L\ for which/(x) is 
the same element of L2 gives a contraction L\ of L\. Then / establishes an 
isomorphism between L\ and a subset of L2. The excluded elements of L2 may 
be removed by a curtailment. 
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Since the presence of an w-cycle is invariant under contractions and curtail
ments we have 

COROLLARY, n-cyclic orbits are mateable only with n-cyclic orbits. 

THEOREM 4. A necessary and sufficient condition for an orbit L to be self-
mateable is 

1) L is n-cyclic with n odd. Let n = 2k + 1. 

2) The branches of L are disjointedly the union of a set of branches S and a 
set of branch clusters S. The S and S are in a biunique correspondence such that if 
B£S and B£S correspond, then a contraction of B is isomorphic to a curtailment 
of B and* if B is from s, B is from gk(z). 

Necessity. Let xÇL. As f(x) Ç Z,, for suitable p> q, 

g*(x)= g*(f(x)) 
or 

(8) f*(x) = f*+Kx). 
As the two superscripts are distinct, familiar reasoning shows that for some 

j , f3\x) belongs to a cycle. Let it be C of order n. Let (3) be its elements so 
numbered that5/(xy) = xy+i. Then5 g(xj) = xy+2. If n were even, the subsets of 
(3) with odd and even subscripts would each constitute a distinct cycle of L 
with respect to g. Put n = 2k + 1. 

If x 6 C, then /(*) = fk+2(x) = gfc+1(*). 
Now let B' be a branch with respect t o / ; XQ, its leader;J3 and B, its even and 

odd parts. As xo£B, B is not vacuous. 

Letting y£ B, we must have for some m ^ 0 

fm(y)=xQ= gm(y). 

As XQ is a leader with respect to g also, we see that, in regard to g, B is a branch 
from g(#o) = 2. 

Similarly, if y(z B, 
fm+1(y)=xo= gm(f(y)) 

which implies 

gm+1(y) = f(xo)e a 
Thus, in regard to g, B is a branch cluster from 

f(xo) = fk+1(f(xQ))= gk+Kxo)= g\z). 

Thus we have supplied the correspondence mentioned in 2). That a con
traction of B is isomorphic to a curtailment of B follows as in the proof of 
Theorem 3. 

4We admit vacuous branch clusters, but not vacuous branches. 
6Reckoned mod n. 
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Sufficiency, If x is in the cycle of the given orbit we define: 

f(x)=gk+i(x). 

Now let B and B be as in 2). An / can be defined for their members as in the 
proof of Theorem 3, with evident modifications. 

4. Inadequacy of the Abel function method. Lyche has shown that (in 
the case of functions of a real variable, but the result is true generally) : 

A necessary and sufficient condition for the Abel function to exist is that for no 
positive integer n and x£E is gn(x) — x. 

In other words, the condition is that there be no cyclic orbits. Our con
ditions show t h a t / may exist in the contrary case. For example, let the orbit 
diagrammed in Figure 3 comprise the entire space E. 

The truth of a fixed point theorem is equivalent to the existence of a 1-orbit. 
Thus the non-existence of the Abel function is not uncommon. 

Now let E be the set of all non-negative numbers and g (x) = x2. If we define 
gk(x) to be x2ÎC we have a consistent iterate for each real k. Yet <j> does not 
exist as 0 and 1 each belong to a 1-cycle. 

We can easily construct the Abel function using the diagrams of non-cyclic 
orbits. In Figure 1, say, assign a real number to each vertical bank of dots in 
such a way that these numbers increase by unity as we proceed to the right. 
Doing this for each orbit (assumed non-cyclic), we obtain the most general 
Abel function. The truth of Lyche's theorem now becomes apparent. 

For an Abel function to have an inverse it is clearly necessary that each 
vertical bank contain at most one dot. Further, the numbers must be assigned 
so as to avoid duplication of values on different orbits. If an Abel function is 
to be usuable for constructing iterates of all real orders, there must be a large 
enough number of orbits for each real number to occur once among its function 
values. | 

5. Examples: The Menger Problem. Let E be Ri and g(x) = a + bx. If 
b< 0, our technique enables us still to construct solutions of (1), but they will 
never be continuous. 

To illustrate, we take the case: g(x) = —x. Here, the orbit containing 0 is a 
1-cycle. All other orbits are 2-cycles containing x and - x ( x ^ 0 ) ; there is thus 
exactly one containing a given positive number. The former can and must be 
self-mated ; the latter are mateable in pairs. 

To construct an example we must first divide the set of positive numbers 
into two parts in biunique correspondence. Taking these parts, say, to be the 
alternate intervals (n, n + 1] and for the correspondence, using an obvious 
linear mapping, we are led to a function whose graph is sketched in Figure 4. 
(The heavy dots on the ends of the segments indicate that these end points 
are included.) 

The problem has continuous solutions if we work in the complex domain. 
On the other hand there exist analytic g such that (1) has a continuous solution 
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in the real domain, but none at all in the complex domain. Such is g(x) = x2. 
In the real domain take/(x) = |x|22. In the complex domain no/exis ts as there 
is but one 2-cycle (namely, the complex cube roots of unity.) 

Iterates of order 1/m. It is not hard to generalize from (1) to 

fm(x)= g(x). 

We state without proof the partial result: 

Each orbit L0 with respect to f is the union of orbits Li, . . . , Lp with respect 
to g and p is a divisor of m. If p < m, L0 is cyclic. When L0 is cyclic of order n, 
Li, . . . , Lp are all cyclic of order n/p, and 

p = (m, n). 

The oddness of n in Theorem 4 follows from the special instance of this last 
equation: p = 1, m = 2. 
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