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Retracts of solutions of Yang–Baxter equation

Yang–Baxter equation

Definition
Let V be a vector space. A homomorphism R : V ⊗ V → V ⊗ V is
called a solution of Yang–Baxter equation if it satisfies

(R⊗ idV)(idV ⊗ R)(R⊗ idV) = (idV ⊗ R)(R⊗ idV)(idV ⊗ R).
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Retracts of solutions of Yang–Baxter equation

Set-theoretic solutions

Definition
Let X be a set. A mapping r : X × X → X × X is called a
set-theoretic solution of Yang–Baxter equation if it satisfies

(r× idX)(idX × r)(r× idX) = (idX × r)(r× idX)(idX × r).

A solution r : (x, y) 7→ (σx(y), τy(x)) is called non-degenerate if σx
and τy are bijections, for all x, y ∈ X. A solution is called
involutive if r2 = idX2 .

Observation

If r is involutive then τy(x) = σ−1
σx(y)(x).
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Retracts of solutions of Yang–Baxter equation

Retracts of involutive solutions

Definition
Let (X,σ, τ) be an involutive solution. We define a relation ∼ on X
as

x ∼ y if and only if σx = σy.

The set {[x]∼ | x ∈ X} with operations

σ[x]∼([y]∼) = [σx(y)]∼ and τ[y]∼([x]∼) = [τy(x)]∼

is called the retract of X and denoted by Ret(X).
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Retracts of solutions of Yang–Baxter equation

Retract is a solution

Theorem (Etingof, Schedler, Soloviev)

Let (X,σ, τ) be an involutive solution. Then Ret(X) is a
well-defined involutive solution.

Definition
We say that an involutive solution (X,σ, τ) has multipermutation
level k if k is the smallest integer such that |Retk(X)| = 1.

Sketch of the proof.

X → Ret(X)
↓ ↓

G(X) → G(X)
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Retracts of solutions of Yang–Baxter equation

Retracts of non-involutive solutions

Definition
Let (X,σ, τ) be a solution. We define a relation ∼ on X as

x ∼ y if and only if σx = σy and τx = τy

Theorem (P. J., A. P., A. Z.-D.)

Let (X,σ, τ) be a solution. Then Ret(X) is a well-defined solution.

Sketch of the proof.

Let x ∼ x ′ and y ∼ y ′. Then

σx(y) ∼ σx ′(y ′)
σ−1

x (y) ∼ σ−1
x ′ (y

′)

τy(x) ∼ τy ′(x ′)
τ−1

y (x) ∼ τ−1
y ′ (x

′)
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2-Reductive involutive solutions

Multipermutation solutions of level 1

Proposition

Let X be a set and let f be a permutation on X. We define, for all
x, y ∈ X,

σx(y) = f(y) and τy(x) = f−1(x).

Then (X,σ, τ) is an involutive solution of multipermutation
level 1. Such a solution is called Lyubashenko solution or
permutation solution.
On the other hand, every multipermutation solution of level 1 is a
permutation solution.

Definition
If f = idX then X is called a trivial solution.
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2-Reductive involutive solutions

Reductivity

Definition
Let (X,σ, τ) be an involutive solution. We say that X is k-reductive
if

σσ···σσx0 (x1)
(x2)···(xk−1)(xk) = σσ···σx1 (x2)···(xk−1)(xk)

Proposition (T. Gateva-Ivanova)

multipermutation level at most k − 1⇒ k-reductivity⇒
multipermutation level at most k

Proposition (T. Gateva-Ivanova)

Let (X,σ, τ) be an involutive solution satisfying

∀x ∈ X ∃y ∈ X σy(x) = x.

Then X is k-reductive if and only if it has multipermutation level at
most k.
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2-Reductive involutive solutions

Permutation group

Definition
Let (X,σ, τ) be an involutive solution. The group

G(X) = 〈σx | x ∈ X〉

is called the permutation group of X or the involutive Yang-Baxter
group of X.

Observation
Let (X,σ, τ) be a k-reductive involutive solution. Then each orbit
of the action of G(X) is a subsolution of X of multipermutation
level at most k − 1.
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2-Reductive involutive solutions

2-reductive solutions

Proposition (T. Gateva-Ivanova)

Let (X,σ, τ) be an involutive solution. Then the following
conditions are equivalent:

X is 2-reductive, i.e. σσx(y)(z) = σy(z),
σx ∈ Aut(X), for each x ∈ X, i.e. σxσy(z) = σσx(y)σx(z),

X has multip. level at most 2 and, for all x ∈ X, τx = σ−1
x ,

Ret(X) is a trivial solution.

Corollary

Let (X,σ, τ) be a 2-reductive involutive solution. Then G(X) is
abelian.

Theorem (W. Rump)

For each k ∈ N, there exists an involutive solution of
multipermutation level k with cyclic permutation group.
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2-Reductive involutive solutions

Construction of 2-reductive solutions

Theorem (P. J., A. P., A. Z.-D.)

Let us have

an index set I,
abelian groups Ai, for i ∈ I,
a matrix of constants ci,j ∈ Aj, for i, j ∈ I.

Then the set X =
⊔
i∈I

Ai with operation σ : X × X → X defined by

σa(b) = b + ci,j, for a ∈ Ai and b ∈ Aj
is a 2-reductive involutive solution.
Conversely, every 2-reductive involutive solution can be obtained
this way.

Corollary

Each abelian group is isomorphic to the permutation group of a
2-reductive involutive solution.
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2-Reductive involutive solutions

Numbers of 2-reductive solutions

n 1 2 3 4 5 6 7 8
involutive solutions 1 2 5 23 88 595 3456 34528

multip. level 2 1 2 5 19 70 359 2095 16332
2-reductive 1 2 5 17 65 323 1960 15421

mp level 2, not 2-red. 0 0 0 2 5 36 135 911

n 9 10 11
2-reductive 155889 2064688 35982357

n 12 13 14
2-reductive 832698007 25731050861 1067863092309

Theorem (S. Blackburn)

There are at least 2n2/4+o(n·log n) 2-reductive involutive solutions.
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Solutions of multipermutation level 2

Displacement group

Definition
Let (X,σ, τ) be an involutive solution. Then displacement group
or the transvection group of X is the group

Dis(X) = 〈σxσ
−1
y | x, y ∈ X〉.

Theorem (P. J., A. P.)

Let (X,σ, τ) be an involutive solution of multipermutation level at
most 2. Then Dis(X) is a normal abelian subgroup of G(X).
Moreover, G(X) = Dis(X)〈σx〉, for any x ∈ X.
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Solutions of multipermutation level 2

Example on groups

Example

Let X = {1, 2, 3, 4, 5} and let

σ1 = (1, 2)(3, 5)

σ2 = (1, 2)(4, 5)

σ3 = σ4 = σ5 = (1, 2)(3, 4)

Then

G(X) = {idX , (1, 2)(3, 5), (1, 2)(4, 5), (1, 2)(3, 4), (3, 4, 5), (5, 4, 3)}

and
Dis(X) = {idX , (3, 4, 5), (5, 4, 3)}.
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Solutions of multipermutation level 2

From multipermutation level 2 to 2-reductivity

Proposition (P. J., A. P. A. Z.-D.)

Let (X,σ, τ) be an involutive solution of multipermutation level at
most 2 and choose e ∈ X. Let (X ′,σ ′, τ ′) be the following:

X ′ = X, σ ′x = σxσ
−1
e , τ ′y = σeτσ−1

e (y).

Then (X ′,σ ′, τ ′) is a 2-reductive involutive solution with
G(X ′) = Dis(X ′) = Dis(X).

Proposition (P. J., A. P. A. Z.-D.)

Let (X,σ, τ) be a 2-reductive involutive solution and let π ∈ SX
satisfy σπ(y)πσx = σπ(x)πσy. Let (X ′,σ ′, τ ′) be:

X ′ = X, σ ′x = σxπ, τ ′y = π−1τπ(y).

Then (X ′,σ ′, τ ′) is an involutive solution of multipermutation
level 2 with G(X ′) = G(X)〈π〉.
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Solutions of multipermutation level 2

Example on isotopy

Example

Let X = {1, 2, 3, 4, 5} and let σ1 = (1, 2)(3, 5), σ2 = (1, 2)(4, 5),
σ3 = σ4 = σ5 = (1, 2)(3, 4).
Let σ ′x = σxσ

−1
1 , then

σ ′1 = idX ′

σ ′2 = (3, 4, 5)

σ ′3 = σ ′4 = σ ′5 = (5, 4, 3)

Let σ ′′x = σxσ
−1
3 , then

σ ′′1 = (3, 4, 5)

σ ′′2 = (5, 4, 3)

σ ′′3 = σ ′′4 = σ ′′5 = idX ′′
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Indecomposable solutions

Definition
We say that an ivolutive solution (X,σ, τ) is indecomposable if
G(X) acts transitively on X.

Proposition

Let (X,σ, τ) be a k-reductive involutive solution of
multipermutation level k. Then X is decomposable.

Proof.
X is k-reductive and therefore the orbits of G(X) are of
multipermutation level at most k − 1. Hence G(X) is not
transitive.
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Indecomposable solutions of level 2

Abelian permutation group

Theorem (M. Castelli, G. Pinto, W. Rump)

Let (X,σ, τ) be an indecomposable involutive solution of size pq,
where p, q are primes, such that G(X) is abelian. Then X is of
multipermutation level at most 2.
There is only one such solution, up to isomorphism if p 6= q, and
there are p + 1 such solutions if p = q.
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Indecomposable solutions of level 2

Generators of the displacement group

Proposition (P. J., A. P.)

Let (X,σ, τ) be an indecomposable involutive solution of
multipermutation level at most 2. Choose e ∈ X and let d = σe(e).
Then o(σe) = o(σd) and

G(X) = 〈σe,σd〉 and Dis(X) =
〈
σ−i

e σdσ
i−1
e | i ∈ Z

〉
.

Corollary

If G(X) is abelian then Dis(X) is cyclic and G(X) ∼= C1 × C2, where
C1, C2 are cyclic and |C1| divides |C2|.

Observation
For finite solutions, there are 3 parameters:

n1 = |C1|, n2 = |C2|, σn1
d = (σn1

e )r+1.
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Indecomposable solutions of level 2

Construction of indecomposable solutions with
abelian permutation group

Theorem (P. J., A. P., A. Z.-D.)

Let n1, n2 ∈ Z+ be such that n1 | n2. Let r ∈ {0, 1, . . . , n2/n1 − 1}
be such that n2 | n1r2. Then (X,σ, τ) with X = Zn1 × Zn2 and

σ(a,i)((b, j)) = (b − ar + i, j + ir − ar2 + 1)

is an indecomposable involutive solution of size n1n2 and
multipermutational level at most 2 with the permutation group
G(X) isomorphic to Zn1 × Zn2 .
Different choices of n1, n2 and r give non-isomorphic solutions.
Every finite indecomposable involutive solution of
multipermutation level 2 with abelian permutation group is
isomorphic to a solution so constructed.
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Indecomposable solutions of level 2

Indecomposable solutions of size pq

Conditions: |X| = n1 · n2, n1 | n2, 0 6 r < n2
n1

, n2 | n1r2

Example
Case p 6= q: n1 = 1, n2 = pq, r = 0

Case Zp × Zp: n1 = p, n2 = p, r = 0

Case Z2
p: n1 = 1, n2 = p2, r ∈ {0, p, 2p, . . . , p2 − p}
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Indecomposable solutions of level 2

Indecomposable solutions with non-abelian
permutation group

Theorem (P. J., A. P.)

There exists an indecomposable solution that homomorphically
maps onto any indecomposable involutive solution of
multipermutation level 2.

Idea of the proof.

Z . . . free cyclic group⊕
Z Z . . . free abelian group with ω generators

(
⊕

Z Z)o Z maps onto G(X) = Dis(X)〈σx〉
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