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A Self-distributivity

Shelf: Set S with a binary operation < satisfying

Self-distributivity: ‘ (x<y)<z=(x<2z)<(y<z) ‘

Examples:

= group S with x <1y =y~ 'xy yields a quandle: (SD)
& Yy, x — x <y is a bijection
& x <x =%
2y xy)z = (27 Yy ')z x2) (2 Tyz)
=> abelian group S,t: S — S, a<b=ta+ (1 —t)b.
Applications:

=* invariants of knots and knotted surfaces (Joyce & Matveev ’82);



y xdy
(S, <1)-colourings J/
of knot diagrams: ‘/\
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cf. Wirtinger A p
presentation |

of US| (R3 \ K):

Proposition: (S, <) is a quandle —
#{ (S, <)-colourings of diagrams }  is a knot invariant.

¢ .7....(g<b)<c
/0 :




Self-distributivity: ‘ x<y)<z=(x<2z)<(y<z) ‘

Applications:

invariants of knots and knotted surfaces (Joyce & Matveev ’82)
a total order on braid groups (Dehornoy *97);

Hopf algebra classification (Andruskiewitsch-Grana '03);
integration of Leibniz algebras (Kinyon *07);

study of set-theoretic solutions to the Yang—Baxter equation.
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You Could Have Invented SD
Cohomology If You Were...



/\\2/\ a Knot Theorist

c — (a<b)<c c Ala<c)<(b<c)
b~~~ N\,b<c Rl bN/_}Sb<1c
aﬁc a—" (¢

diagrams: D " pr
colourings: e ~ ¢
colouring sets: Cols,4(D) JLIIN Cols, 4(D’)

Counting invariants: # Cols 4(D) = # Cols 4(D’).

Question: Extract more information?

w(C) =w(C)

\
{w(e)| € e Cols 4(D)} = { w(€)| € € Cols,o(D) }.



Answer (Carter—Jelsovsky—Kamada—Langford—Saito '03): State-sums over
crossings, and Boltzmann weights:

$:SxS = Zm ~ wy(€) =) +d(a,b)
X

e

Conditions on ¢:
c b<c
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o(a,b)+bla b, ) 4bbcT =  blbrc+ dla, )+ bla<c,b < c)

RI

a a
S a ~

a a

bla,a) = 0

Quandle cocycle invariants: {wd,((i') ‘ € € Cols,4(D) }



$:SxS = Zm ~ we(€) =D +d(a,b)
zx

Quandle cocycle invariants: { we (€) ‘ € € Cols,4(D) }
Example: =0 ~ counting invariants.
Quandle cocycle invariants 2 counting invariants.

Example: S ={0,1}, a < b =q,
$(0,1) =1 and d(a,b) = 0 elsewhere.




$:SxS = Zm ~ wy(€) =) *d(a,b)
EX

Quandle cocycle invariants: {wd,((i') ‘ € € Cols,4(D) }

Conjecture (Clark-Saito-...):
Finite quandle cocycle invariants distinguish all knots.

Generalisation: K™ < R"t2 and ¢: S*("+1) 5 7.

Wish:
d"'$p =0 = ¢ refines counting invariants for n-knots,
& =d™p = the refinement is trivial.



>3 ... a Hopf Algebraist

Question: Classify nice (= f.-d. pointed) Hopf algebras over C.

Classification program (Andruskiewitsch-Grana—Schneider "98):

nice Hopf algebra A
¢

Yetter—Drinfel’d module V € YD
¢
YBE solution (V, o) «~ quandle (S, <) & $: S xS = Zm
¢
Nichols algebra B(V)
, &V e yp
bosonisation Hopf algebra B(V)#H

v G(A) = the group of group-like elements of A, H(A) = CG(A);
v R(A) = coinvariants of gr(A) — gr(A)o = H(A), V(A) =Prim(R(A));
v inred: “arrows with a large image”;

v gr(A) = R(A)#H(A) = [conjecturally] = B(V(A))#H(A).



YBE solution (CS,04,¢) <~ quandle (S,<)& ¢:S xS = Zm

0q,¢: (a,b) — qq’(a’b)(b, a<b)

Here q is an mth root of unity, or transcendental.

Wish:
d’¢p =0 == (CS,04,4) isa YBE solution,
¢ — ¢’ =d"p = the YBE solutions are isomorphic.



/\‘4\/\The desired cohomology theory

Fenn et al. *95 & Carter et al. '03 & Grafia "00:

Shelf (S, <) & abelian group A~ cochain complex

Cr(S,A) = Map(S™¥, A),

k+1
k i—1 -~
(dRﬂ(ala---)akJr]) = Z(_”l (f(ah-“)aia---)akJr])
i=1
—flar< ai, ..., @i—1< @4, Qi 1yen ey Qkg1)

~+ Rack cohomology H¥(S,A) = Ker d¥/Imd<—".
Quandle (S, <1) & abelian group A ~» sub-complex of (CK, d¥):
CE(S,A) ={f: "% = A[f(...,q,q,...) =0}

~> Quandle cohomology H¥(S, A).



C::(S>A) = Map(SXk>A)’

Kt 1
(dsf)(a]a--wak—i-]) = Z(*1)1_1 (f(ah-”)él\i’”')ak—i-])
im1
—flar<aiy..oyai 1< @i, Qigtyen .y Qrgt));

CE(S,A) ={f: S** - Alf(...,q,q,...) =0}
In small degree:
(dgf)(ar) =0
(dif)(a1,a2) = f(a1 < az) —f(ay) H; (S,A) = Map(Orb(S), A)
(dZf)(@) = flay < az,a3) —f(ar,a3) +far,a2) — f(ar < a3, a2 < a3)
fe Cé <~ f(a,a) =0.
Remark: d2d} =0 <= self-distributivity for <.

This is what we were looking for! This construction yields:
v Boltzmann weights for constructing higher knot invariants;
v an important class of YBE solutions giving nice Hopf algebras;
v also, a parametrisation of abelian shelf extensions.



/\‘5\/\Topo|ogica| realisation

Fenn—-Rourke-Sanderson ’95:

Shelf (S, <1) ~ classifying space B(S). It is a CW-complex:

deg O: deg 1: sk
b a<b

deg 2:
a b

deg 3:

(b<c)

b<c b<c




<(b<c)

b<c

Remark: the edges can be coloured starting from the green corner
<= < is self-distributive.

degn: ]_1[0,1]TL N/

SXT‘L
The colouring continues uniquely to other edges of [0, 1]™.

Boundaries: usual topological ones.

[H;(S,A) = H*(B(S), A) |




a
ar 3...

degn: H[O, 1 O an
Sxn
The colouring continues uniquely to other edges of [0, 1]™.

Boundaries: usual topological ones.

[H;(S,A) = H*(B(S), A) |

Nosaka ’11: To get quandle cohomology, add 3-dimensional cells bounding

a a

a a



[H;(S,A) = H*(B(S),A) |

This brings topological tools in the study of H?.

v | (B(S)) = As(S)|  where As(S) := (S|ab = b(a <Ib)) is the
associated (= adjoint = structure = universal enveloping) group of (S, <).

b a<b

a b

v Rack cohomology becomes a pre-cubical cohomology, i.e.,
k+1

dk = Z(_ni—‘ (d¥o—dfy), di,cdjc = dj_1,cdi,e foralli<j.

i=1
v Concrete computations (Fenn—Rourke-Sanderson "07):
1) Trivial quandle T, = ({1,...,n}, a <b=a): B(T,) = Q(V,S?).
2) Free rack on n generators FR,;:  B(FRp) =\, S'.



L&/ Adding coefficients

Level 1: For Ml € (syMod,(s), the cohomology H; (S, M) is defined by

C}:(S,M) = Map(SXk>M)>
k+1 )
(dbf)(ah‘”)ak—i—]) = Z(*1)171 (f(ah-”)d\i’”wak—i—] )Cl{

i=1

—ai-flar<ag,y...,ai1<aq, Q41,005 ax41))

Ax+1




M e As(S)MOdAs(S) ~ H:(S)M)

Many of the above constructions and results generalise to this setting,
e.g. the classifying space:

deg0: m e M,
deg 1: m——m-a.

Application: arc-and-region colourings (Carter-Kamada—-Saito '07).

‘m-ab:m-b(QQb)‘

b a<lb
m-a \/ m-b
a J b

m

Examples of As(S)-(bi)modules:
v trivial actions;
v As(S) € as(syModag(s);
v § € Mod,(s), with the action induced by a - b = a <1 b;
v Modg1] C Modag(s), with the action induced by a - b = ta.



L&/ Adding coefficients

Level 2: M is a Beck module over S, i.e., an abelian group objects in the
category Rack | S (Andruskiewitsch—Grara 03, Jackson ’05):

v o~ H(SM);

v classification of a larger class of shelf extensions.

Pursuing the homotopical approach further:
Theorem (Szymik ’17): Quandle cohomology is a Quillen cohomology.
Applications:

v excision isomorphisms;

v/ Mayer-Vietoris exact sequences.



KA Cup product

—:CreCl — Cckm

Ax+4+n T

#// . —
foglannam) = Y (D7 TS

splittings : X
/
\




-
fvg(a1)---)ak+n): Z (=1) . . >
splittings : /

Theorem:
v (Ck,—) d.g. associative, graded commutative up to an explicit htpy;
v (H},—) associative, graded commutative;

v even better: C¥ dendriform, Zinbiel up to an explicit htpy.

Interpretations:
v quantum shuffle coproduct;
v topological cup product;
v cup product in cubical cohomology;
v shelf ~ explicit d.g. bialgebra ~ cohomology + structure.

(Serre ’51, Baues *98, Clauwens 11, Covez ’12, L. ’17,
Covez—Farinati-L.—Manchon ’19.)



<84 Our bialgebra

Shelf (X, <1) ~ explicit d.g. bialgebra B(X):

B(X) :=Z(x,ey : x,y € X) / (yx¥ —xy,yexy —exy : x,y € X).

Here xY =x < y.

Structure:
lex| =1, x| = 0;
dlex) =1—x, d(x) =0;
Alex) =ex ®x+1® ey, Alx) =x @ x;
€(ex) =0, E(X) =1.

B(X) is a d.g. As(X)-bimodule:
x-b-y=1xby forallx,y € X, b € B.



Shelf (X, <) ~ explicit d.g. bialgebra and d.g. As(X)-bimodule B(X):
B(X) :=Z{x, ey : x,y € X) / (yx¥ —xy,yexy —exy : x,y € X).

Proposition:

v B(X) computes the rack homology with coeffs in the monoid
AsT(X):=(X|ab =b(a<b))*:

He(B(X)) = Hy(X, As™ (X));

v the d.g. coalgebra B(X) := Z ®x,(x) B(X) computes the rack homology

with trivial coeffs:
He(B(X)) = H (X, Z).

~ the cup product — on rack cohomology.



X/ Explicit homotopy

Defineh: B — B ® B (or B — B ® B) by

n

h(aem T exn) = Z(_”i(a ® a)(tA)(--- €xi_q )(exi & exi)A(exH] T

i=1

h(a) := 0,

where a =Y - - Ym.

Theorem: h is a homotopy between A and TA:
(d®Idg +1dg ® d)h + hd = TA — A.

Corollary: h measures the commutativity defect of —.



S8 More structure and more explicit homotopies

B(X) is a codendriform coalgebra and B(X) is a d.g. codendriform coalgebra:

<_
A(aem "'exn) = (aem & ax])A(exz T exn))

%
A(aex1 "'exn) =(a® ae)q)A(exz T exn)>

Defineh: B — B ® B by

h(aey, ---ex,) = —(ax; ® aex,)h(ex, - ex,).

Theorem: h is a homotopy between X and TZ:
— = = 4
(d®ldg+Ildg ® d)h+hd = A —TA.

Corollary: h measures the Zinbielity defect of —.

Remark: The codendriform structure is not surprising (cf. cubical or
quantum shuffle interpretation), while the Zinbiel structure is!



____j>ﬁjxiChnnuﬂecohonuﬂogyvsrackcohonuﬂogy

Cr(S,A) = Map(S*¥, A),
CE(S,A) ={f: "% = Alf(...,q,q,...) =0}

Theorem (Litherland—Nelson ’03): The rack cohomology of a quandle splits:
HE = HE @ HE

R ™

Here HX is the cohomology of an explicit degenerate subcomplex of C¥.

Generalisation (L.—Vendramin ’17): A similar splitting holds for skew cubical
cohomology, hence for a wide class of YBE solutions.

Theorem (Przytycki—-Putyra ’16): Degenerate cohomology is degenerate.
That is, H‘é completely determines HX.



Theorem (Litherland—Nelson °03): The rack cohomology of a quandle splits:
HE = HE @ HE

Here HX is the cohomology of an explicit degenerate subcomplex of CK.

Theorem (Przytycki—-Putyra ’16): Degenerate cohomology is degenerate.
That is, H‘é completely determines HX.

Our theorem:
v H, is an associative subalgebra, and Hy, is an associative ideal;

v’ Hg is not a Zinbiel subalgebra, but H,, is a Zinbiel ideal.

Question: Does Hy determine H;, as a Zinbiel algebra?
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