Bialgebraic approach to rack cohomology

Victoria LEBED, Université Caen Normandie Joint work with Simon Covez, Marco Farinati, and Dominique Manchon

$$(\alpha \lhd b) \lhd c =$$
$$(\alpha \lhd c) \lhd (b \lhd c)$$

Arras, October 2019

Self-distributivity

Shelf: Set S with a binary operation \triangleleft satisfying

$$\underline{\mathsf{Self-distributivity}} \cdot \boxed{ (x \lhd y) \lhd z = (x \lhd z) \lhd (y \lhd z) }$$

Examples:

⇒ group S with $x \triangleleft y = y^{-1}xy$ yields a quandle: (SD) & $\forall y, x \mapsto x \triangleleft y$ is a bijection & $x \triangleleft x = x$;

$$z^{-1}(y^{-1}xy)z = (z^{-1}y^{-1}z)(z^{-1}xz)(z^{-1}yz)$$

 \Rightarrow abelian group $S, t: S \to S, \quad \alpha \lhd b = t\alpha + (1-t)b.$

Applications:

→ invariants of knots and knotted surfaces (Joyce & Matveev '82);

$\underline{\mathsf{Self-distributivity:}} \ | \ (x \vartriangleleft y) \vartriangleleft z = (x \vartriangleleft z) \vartriangleleft (y \vartriangleleft z) |$

Applications:

- → invariants of knots and knotted surfaces (Joyce & Matveev '82);
- → a total order on braid groups (Dehornoy '91);
- → Hopf algebra classification (Andruskiewitsch-Graña '03);
- → integration of Leibniz algebras (Kinyon '07);
- → study of set-theoretic solutions to the Yang-Baxter equation.

You Could Have Invented SD
Cohomology If You Were...

2 ... a Knot Theorist

Counting invariants: $\# Col_{S, \triangleleft}(D) = \# Col_{S, \triangleleft}(D')$.

Question: Extract more information?

$$\omega(\mathfrak{C}) = \omega(\mathfrak{C}')$$

$$\Downarrow$$

$$\big\{\,\omega(\mathfrak{C})\,\big|\,\mathfrak{C}\in\mathsf{Col}_{S,\vartriangleleft}(\mathsf{D})\,\big\} = \big\{\,\omega(\mathfrak{C}')\,\big|\,\mathfrak{C}'\in\mathsf{Col}_{S,\vartriangleleft}(\mathsf{D}')\,\big\}.$$

Answer (*Carter–Jelsovsky–Kamada–Langford–Saito '03*): State-sums over crossings, and Boltzmann weights:

$$\phi \colon S \times S \to \mathbb{Z}_{m} \qquad \rightsquigarrow \qquad \omega_{\phi}(\mathcal{C}) = \sum_{b} \pm \phi(a,b)$$

Conditions on φ:

$$\frac{c}{b} \quad a \triangleleft b \quad c \qquad RIII \\
 \phi(a,b) + \phi(a \triangleleft b,c) + \phi(b,c) = \qquad \frac{c}{b} \quad c \qquad a \triangleleft c \\
 \phi(b,c) + \phi(a,c) + \phi(a \triangleleft c,b \triangleleft c)$$

$$\begin{array}{cccc}
a & & & & & \\
a & & & & \\
\phi(a, a) & = & & & \\
\end{array}$$

$$\begin{array}{cccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

Quandle cocycle invariants: $\big\{\,\omega_{\varphi}(\mathfrak{C})\,\big|\,\mathfrak{C}\in \mathsf{Col}_{S,\vartriangleleft}(D)\,\big\}.$

$$\varphi \colon S \times S \to \mathbb{Z}_m \qquad \rightsquigarrow \qquad \omega_{\varphi}(\mathfrak{C}) = \sum_{b \leftarrow} \pm \varphi(\mathfrak{a}, b)$$

Quandle cocycle invariants: $\{ \omega_{\Phi}(\mathcal{C}) \mid \mathcal{C} \in Col_{S, \triangleleft}(D) \}$.

Example: $\phi = 0$ \sim counting invariants.

Quandle cocycle invariants \supseteq counting invariants.

Example:
$$S = \{0, 1\}, \ \alpha \lhd b = \alpha,$$

$$\phi(0,1) = 1$$
 and $\phi(a,b) = 0$ elsewhere.

$$\varphi \colon S \times S \to \mathbb{Z}_m \qquad \rightsquigarrow \qquad \omega_{\varphi}(\mathfrak{C}) = \sum_{b} \pm \varphi(a,b)$$

Quandle cocycle invariants: $\{ \omega_{\varphi}(\mathcal{C}) \mid \mathcal{C} \in Col_{S, \triangleleft}(D) \}$.

Conjecture (*Clark–Saito–…*):

Finite quandle cocycle invariants distinguish all knots.

Generalisation: $K^n \hookrightarrow \mathbb{R}^{n+2}$ and $\phi \colon S^{\times (n+1)} \to \mathbb{Z}_m$.

 $d^{n+1} \varphi = 0 \implies \varphi$ refines counting invariants for n-knots, $\varphi = d^n \psi \implies$ the refinement is trivial. **Question**: Classify nice (= f.-d. pointed) Hopf algebras over \mathbb{C} .

Classification program (Andruskiewitsch-Graña-Schneider '98):

```
nice Hopf algebra A
Yetter-Drinfel'd module V \in {}_{\mathsf{H}}^{\mathsf{H}}\mathbf{Y}\mathbf{D}
            YBE solution (V, \sigma)
                                                            \leftarrow quandle (S, \triangleleft) \& \Phi: S \times S \to \mathbb{Z}_m
           Nichols algebra B(V)
```

& $V \in {}^{\mathsf{H}}_{\mathsf{H}}\mathbf{Y}\mathbf{D}$

bosonisation Hopf algebra B(V)#H

✓ G(A) = the group of group-like elements of A, $H(A) = \mathbb{C}G(A)$; ✓ $R(A) = \text{coinvariants of } gr(A) \rightarrow gr(A)_0 = H(A), V(A) = Prim(R(A));$

✓ in red: "arrows with a large image";

✓ $gr(A) \cong R(A) \# H(A) = [conjecturally] = B(V(A)) \# H(A).$

YBE solution $(\mathbb{C}S, \sigma_{\lhd, \Phi})$ $\begin{cases} \line \line$

$$\boxed{\sigma_{\lhd,\varphi}\colon (a,b)\mapsto q^{\varphi(a,b)}(b,a\lhd b)}$$

Here q is an mth root of unity, or transcendental.

Wish:

$$\begin{array}{ll} d^2\varphi=0 \implies (\mathbb{C}S,\sigma_{\lhd,\varphi}) \text{ is a YBE solution,} \\ \varphi-\varphi'=d^1\psi \implies \text{the YBE solutions are isomorphic.} \end{array}$$

$$\varphi - \varphi' = d^{\mathsf{T}} \psi \implies \mathsf{the} \; \mathsf{YBE} \; \mathsf{solutions} \; \mathsf{are} \; \mathsf{isomorphic}$$

Fenn et al. '95 & Carter et al. '03 & Graña '00:

Shelf (S, \lhd) & abelian group $A \rightsquigarrow \text{cochain complex}$

$$\begin{split} C_{\text{R}}^{k}(S,A) &= \text{Map}(S^{\times k},A), \\ (d_{\text{R}}^{k}f)(\alpha_{1},\ldots,\alpha_{k+1}) &= \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_{1},\ldots,\widehat{\alpha_{i}},\ldots,\alpha_{k+1}) \\ &- f(\alpha_{1} \triangleleft \alpha_{i},\ldots,\alpha_{i-1} \triangleleft \alpha_{i},\alpha_{i+1},\ldots,\alpha_{k+1})) \end{split}$$

$$\sim$$
 Rack cohomology $H_R^k(S,A) = \operatorname{Ker} d_R^k / \operatorname{Im} d_R^{k-1}$.

Quandle (S, \lhd) & abelian group $A \sim \text{sub-complex of } (C_R^k, d_R^k)$:

$$C_{\scriptscriptstyle Q}^{\,k}(S,A) = \{\,f\colon S^{\times\,k} \to A\,|\,f(\dots, {\color{black}\mathfrak{a}}, {\color{black}\mathfrak{a}}, \dots) = 0\,\}$$

$$\sim$$
 Quandle cohomology $H_0^k(S, A)$.

$$\begin{split} (d_{\scriptscriptstyle R}^k f)(\alpha_1, \dots, \alpha_{k+1}) &= \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_1, \dots, \widehat{\alpha_i}, \dots, \alpha_{k+1}) \\ &- f(\alpha_1 \triangleleft \underbrace{\alpha_i, \dots, \alpha_{i-1} \triangleleft \alpha_i}, \alpha_{i+1}, \dots, \alpha_{k+1})); \\ C_{\scriptscriptstyle Q}^k (S, A) &= \{ f \colon S^{\times k} \to A \, | \, f(\dots, \underbrace{\alpha, \alpha, \dots}) = 0 \, \}. \end{split}$$

 $(d_n^1 f)(a_1, a_2) = f(a_1 \triangleleft a_2) - f(a_1)$ $H_n^1(S, A) \cong Map(Orb(S), A)$

 $(d_{\mathfrak{d}}^{2}f)(\overline{\mathfrak{a}}) = f(\mathfrak{a}_{1} \triangleleft \mathfrak{a}_{2}, \mathfrak{a}_{3}) - f(\mathfrak{a}_{1}, \mathfrak{a}_{3}) + f(\mathfrak{a}_{1}, \mathfrak{a}_{2}) - f(\mathfrak{a}_{1} \triangleleft \mathfrak{a}_{3}, \mathfrak{a}_{2} \triangleleft \mathfrak{a}_{3})$

In small degree: $(d_p^0 f)(a_1) = 0$

$$\begin{split} &f\in C_{\scriptscriptstyle Q}^2\iff f(\alpha,\alpha)=0.\\ &\text{Remark: } d_{\scriptscriptstyle P}^2d_{\scriptscriptstyle P}^1=0\iff \text{self-distributivity for } \vartriangleleft. \end{split}$$

 $C_p^k(S, A) = Map(S^{\times k}, A),$

This is what we were looking for! This construction yields:

✓ Boltzmann weights for constructing higher knot invariants;
 ✓ an important class of YBE solutions giving nice Hopf algebras;

✓ also, a parametrisation of abelian shelf extensions.

5 Topological realisation

Fenn-Rourke-Sanderson '95:

Shelf $(S, \triangleleft) \sim \text{classifying space } B(S)$. It is a CW-complex:

$$deg 0: *$$

$$deg 1: * \xrightarrow{\alpha} *$$

deg 3:

Remark: the edges can be coloured starting from the green corner $\iff \triangleleft$ is self-distributive.

$$deg n: \coprod_{s \times n} [0, 1]^n$$

The colouring continues uniquely to other edges of $[0, 1]^n$.

Boundaries: usual topological ones.

$$H_R^*(S,A) \cong H^*(B(S),A)$$

 $deg \, n \colon \coprod [0,1]^n$

The colouring continues uniquely to other edges of $[0,1]^n$.

Boundaries: usual topological ones.

$$H_R^*(S,A) \cong H^*(B(S),A)$$

Nosaka '11: To get quandle cohomology, add 3-dimensional cells bounding

$$H_{\scriptscriptstyle R}^*(S,A) \cong H^*(B(S),A)$$

This brings topological tools in the study of $H_{\mathbb{R}}^*$.

✓ $\pi_1(B(S)) \cong As(S)$ where $As(S) := \langle S \mid a \mid b = b \mid (a \triangleleft b) \rangle$ is the associated (= adjoint = structure = universal enveloping) group of (S, \triangleleft) .

✓ Rack cohomology becomes a pre-cubical cohomology, i.e.,

$$d_{\text{R}}^k = \sum_{i=1}^{k+1} (-1)^{i-1} (d_{i,0}^k - d_{i,1}^k), \qquad d_{i,\epsilon} d_{j,\zeta} = d_{j-1,\zeta} d_{i,\epsilon} \quad \text{for all } i < j.$$

- ✓ Concrete computations (Fenn–Rourke–Sanderson '07):
 - 1) Trivial quandle $T_n=(\{1,\ldots,n\},\ \alpha\vartriangleleft b=\alpha)\colon\quad B(T_n)\cong\Omega(\vee_n\mathbb{S}^2).$
 - 2) Free rack on n generators FR_n : $B(FR_n) \cong \bigvee_n \mathbb{S}^1$.

6 Adding coefficients

Level 1: For $M \in {}_{\mathsf{As}(S)}\mathsf{Mod}_{\mathsf{As}(S)},$ the cohomology $H^*_{\scriptscriptstyle{R}}(S,M)$ is defined by

$$\begin{split} C_{R}^{k}(S,M) &= \mathsf{Map}(S^{\times k},M), \\ (d_{R}^{k}f)(\alpha_{1},\ldots,\alpha_{k+1}) &= \sum_{i=1}^{k+1} (-1)^{i-1} (f(\alpha_{1},\ldots,\widehat{\alpha_{i}},\ldots,\alpha_{k+1}) \cdot \alpha_{i}' \\ &- \alpha_{i} \cdot f(\alpha_{1} \triangleleft \alpha_{i},\ldots,\alpha_{i-1} \triangleleft \alpha_{i},\alpha_{i+1},\ldots,\alpha_{k+1})) \end{split}$$

$$= \sum (-1)^{i-1} \begin{pmatrix} a'_{i} & & & & & & & & & \\ a_{k+1} & & & & & & & & \\ & a_{k+1} & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

$$a'_{i} = (\dots (a_{i} \triangleleft a_{i+1}) \dots) \triangleleft a_{k+1}.$$

 $M \in {}_{\mathsf{As}(S)}\mathsf{Mod}_{\mathsf{As}(S)} \quad \leadsto \quad \mathsf{H}^*_{\scriptscriptstyle{R}}(S,M).$

Many of the above constructions and results generalise to this setting, e.g. the classifying space:

deg 0: $m \in M$, deg 1: $m \xrightarrow{a} m \cdot a$.

Application: arc-and-region colourings (*Carter–Kamada–Saito '01*).

Examples of As(S)-(bi)modules:

- ✓ trivial actions;
- \checkmark As(S) \in As(S) Mod_{As(S)};
- ✓ $S \in Mod_{As(S)}$, with the action induced by $a \cdot b = a \triangleleft b$;
- ✓ $\mathsf{Mod}_{\mathbb{C}[t^{\pm 1}]} \subset \mathsf{Mod}_{\mathsf{As}(S)}$, with the action induced by $a \cdot b = ta$.

Level 2: M is a Beck module over S, i.e., an abelian group objects in the category $\mathbf{Rack} \downarrow S$ (*Andruskiewitsch–Graña '03*, *Jackson '05*):

- $\checkmark \quad \rightsquigarrow \quad H_R^*(S,M);$
- ✓ classification of a larger class of shelf extensions.

Pursuing the homotopical approach further:

Theorem (Szymik '17): Quandle cohomology is a Quillen cohomology.

Applications:

- ✓ excision isomorphisms;
- ✓ Mayer-Vietoris exact sequences.

7 Cup product

$$\smile : C^k_R \otimes C^n_R \to C^{k+n}_R$$

$$f \smile g(\alpha_1, \dots, \alpha_{k+n}) = \sum_{\text{splittings}} (-1)^{\# \times} \qquad \vdots \\ \alpha_1 \qquad \qquad f$$

$$f \sim g(a_1, \dots, a_{k+n}) = \sum_{\text{splittings}} (-1)^{\# \times} \qquad \vdots \qquad \qquad g$$

Theorem:

- ✓ (C_R^*, \smile) d.g. associative, graded commutative up to an explicit htpy;
- \checkmark (H_R^{*}, \smile) associative, graded commutative;
- ✓ even better: C_R^* dendriform, Zinbiel up to an explicit htpy.

Interpretations:

- ✓ quantum shuffle coproduct;
- ✓ topological cup product;
- ✓ cup product in cubical cohomology;
- \checkmark shelf → explicit d.g. bialgebra → cohomology + structure.

(Serre '51, Baues '98, Clauwens '11, Covez '12, L. '17,

Covez-Farinati-L.-Manchon '19.)

>√8 ∕ Our bialgebra

Shelf $(X, \triangleleft) \rightsquigarrow \text{ explicit d.g. bialgebra } B(X)$:

$$B(X) := \mathbb{Z}\langle x, e_y : x, y \in X \rangle / \langle yx^y - xy, ye_{x^y} - e_xy : x, y \in X \rangle.$$

Here $x^y = x \triangleleft y$.

Structure:

$$|e_x|=1,$$
 $|x|=0;$ $d(e_x)=1-x,$ $d(x)=0;$ $\Delta(e_x)=e_x\otimes x+1\otimes e_x,$ $\Delta(x)=x\otimes x;$ $\varepsilon(e_x)=0,$ $\varepsilon(x)=1.$

B(X) is a d.g. As(X)-bimodule:

$$x \cdot b \cdot y = xby$$
 for all $x, y \in X$, $b \in B$.

Shelf $(X, \lhd) \sim$ explicit d.g. bialgebra and d.g. As(X)-bimodule B(X):

$$B(X) := \mathbb{Z}\langle x, e_y : x, y \in X \rangle / \langle yx^y - xy, ye_{x^y} - e_xy : x, y \in X \rangle.$$

Proposition:

✓ B(X) computes the rack homology with coeffs in the monoid $\mathsf{As}^+(\mathsf{X}) := \langle \mathsf{X} \,|\, \mathfrak{a}\, \mathfrak{b} \,=\, \mathfrak{b}\, (\mathfrak{a} \lhd \mathfrak{b}) \rangle^+ :$

$$H_{\bullet}(B(X)) \cong H_{\bullet}^{R}(X, As^{+}(X));$$

✓ the d.g. coalgebra $\overline{B}(X) := \mathbb{Z} \otimes_{\mathsf{As}(X)} B(X)$ computes the rack homology with trivial coeffs:

$$H_{\bullet}(\overline{B}(X)) \cong H^{R}_{\bullet}(X, \mathbb{Z}).$$

→ the cup product
─ on rack cohomology.

Define h: $B \to B \otimes B$ (or $\overline{B} \to \overline{B} \otimes \overline{B}$) by

$$h(ae_{x_1}\cdots e_{x_n}):=\sum_{i=1}^n (-1)^i(a\otimes a)(\tau\Delta)(\cdots e_{x_{i-1}})(e_{x_i}\otimes e_{x_i})\Delta(e_{x_{i+1}}\cdots),$$

$$h(a) := 0$$
,

where $a = y_1 \cdots y_m$.

Theorem: h is a homotopy between Δ and $\tau\Delta$:

$$(d\otimes \mathsf{Id}_B + \mathsf{Id}_B\otimes d)h + hd = \tau\Delta - \Delta.$$

Corollary: h measures the commutativity defect of \smile .

B(X) is a codendriform coalgebra and $\overline{B}(X)$ is a d.g. codendriform coalgebra:

$$\overleftarrow{\Delta}(\alpha e_{x_1} \cdots e_{x_n}) = (\alpha e_{x_1} \otimes \alpha x_1) \Delta(e_{x_2} \cdots e_{x_n}),
\overrightarrow{\Delta}(\alpha e_{x_1} \cdots e_{x_n}) = (\alpha \otimes \alpha e_{x_1}) \Delta(e_{x_2} \cdots e_{x_n}),$$

Define
$$\overline{h} \colon \overline{B} \to \overline{B} \otimes \overline{B}$$
 by
$$\overline{h}(\mathfrak{a}e_{x_1} \cdots e_{x_n}) = -(\mathfrak{a}x_1 \otimes \mathfrak{a}e_{x_1})h(e_{x_2} \cdots e_{x_n}).$$

<u>Theorem</u>: \overline{h} is a homotopy between $\overrightarrow{\Delta}$ and $\overrightarrow{\tau\Delta}$: $(d \otimes Id_{\overline{B}} + Id_{\overline{B}} \otimes d)\overline{h} + \overline{h}d = \overrightarrow{\Delta} - \tau \overleftarrow{\Delta}.$

Corollary: \overline{h} measures the Zinbielity defect of \smile .

Remark: The codendriform structure is not surprising (cf. cubical or quantum shuffle interpretation), while the Zinbiel structure is!

$$\begin{split} &C_{\scriptscriptstyle R}^k(S,A) = \mathsf{Map}(S^{\times k},A), \\ &C_{\scriptscriptstyle Q}^k(S,A) = \{\, f \colon S^{\times k} \to A \, | \, f(\dots,\mathfrak{a},\mathfrak{a},\dots) = 0 \, \} \end{split}$$

<u>Theorem</u> (*Litherland–Nelson '03*): The rack cohomology of a quandle splits:

$$H^k_{\scriptscriptstyle R} \cong H^k_{\scriptscriptstyle Q} \oplus H^k_{\scriptscriptstyle D}$$

Here $H^k_{\scriptscriptstyle D}$ is the cohomology of an explicit degenerate subcomplex of $C^k_{\scriptscriptstyle R}.$

<u>Generalisation</u> (*L.–Vendramin '17*): A similar splitting holds for skew cubical cohomology, hence for a wide class of YBE solutions.

<u>Theorem</u> (*Przytycki–Putyra '16*): Degenerate cohomology is degenerate. That is, H_Q^k completely determines H_D^k .

Theorem (Litherland-Nelson '03): The rack cohomology of a quandle splits: $\boxed{H_R^k \cong H_0^k \oplus H_D^k}$

Here $H^k_{\scriptscriptstyle D}$ is the cohomology of an explicit degenerate subcomplex of $C^k_{\scriptscriptstyle R}.$

<u>Theorem</u> (*Przytycki–Putyra '16*): Degenerate cohomology is degenerate. That is, H_0^k completely determines H_0^k .

Our theorem:

- $\checkmark \ H_Q \ is \ an \ associative \ subalgebra, \ and \ H_D \ is \ an \ associative \ ideal;$
- \checkmark H_Q is not a Zinbiel subalgebra, but H_D is a Zinbiel ideal.

Question: Does H_Q determine H_D as a Zinbiel algebra?