## Une promenade dans le livre vert

Victoria LEBED, Université Caen Normandie

Le Havre 2019


## 1 An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$

## An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.


## An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.


## An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

$\checkmark$ More generally : abelian group $A$ with $\mathrm{a} \triangleleft \mathrm{b}=2 \mathrm{~b}-\mathrm{a}$.

## An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(2) Gavin Wraith, a bored school boy
$\checkmark$ Abelian group $\mathrm{A}, \mathrm{t}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.


## An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(2) Gavin Wraith, a bored school boy
$\checkmark$ Abelian group $\mathrm{A}, \mathrm{t}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.


## An exotic axiom for classical structures

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(2) Gavin Wraith, a bored school boy
$\checkmark$ Abelian group $\mathrm{A}, \mathrm{t}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.

$\checkmark$ Any group G with $\mathrm{g} \triangleleft \mathrm{h}=\mathrm{h}^{-1} \mathrm{gh}$.

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(3) David Joyce \& Sergei Matveev, knot colorists separated by the Iron Curtain

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(3) David Joyce \& Sergei Matveev, knot colorists separated by the Iron Curtain

Diagram colorings by $(\mathrm{S}, \triangleleft)$ for braids:

$a \underset{b}{a} \xlongequal[b]{b}$

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(3) David Joyce \& Sergei Matveev, knot colorists separated by the Iron Curtain

Diagram colorings by $(S, \triangleleft)$ for braids:




## 2. From curiosity to a theory

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(3) David Joyce \& Sergei Matveev, knot colorists separated by the Iron Curtain

Diagram colorings by $(\mathrm{S}, \triangleleft)$ for braids:


$a \underset{b}{a} \leadsto \underset{a}{b}$





2 From curiosity to a theory

| $\mathrm{B}_{\mathrm{n}}$ (braid group) | RIII | $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$ |
| :---: | :---: | :---: |
|  | RII | $\forall \mathrm{b}, \bullet \triangleleft \mathrm{b}$ is invertible |
|  |  |  |



2 From curiosity to a theory

| $\mathrm{B}_{\mathrm{n}}$ (braid group) RIII $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$ <br> ${\text { acts on } \mathrm{S}^{\mathrm{n}}}$ RII $\forall \mathrm{b}, \bullet \triangleleft \mathrm{b}$ is invertible <br> $\mathrm{S} \hookrightarrow\left(\mathrm{S}^{n}\right)^{\mathrm{B}_{\mathrm{n}}}$ $(\mathrm{RI})$ $\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$ <br> $\mathrm{a} \mapsto(\mathrm{a}, \ldots, \mathrm{a})$   |
| :--- |



2 From curiosity to a theory



## From curiosity to a theory

| $\mathrm{B}_{\mathrm{n}}$ (braid group) | RIII | $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$ |  |
| :---: | :---: | :---: | :---: |
| acts on $S^{n}$ | RII | $\forall \mathrm{b}, \bullet \triangleleft \mathrm{b}$ is invertible |  |
| $\mathrm{S} \hookrightarrow\left(\mathrm{S}^{\mathfrak{n}}\right)^{\mathrm{B}_{\mathrm{n}}}$ | (RI) | $a \triangleleft a=a$ |  |



## Examples:

| S | $\mathrm{a} \triangleleft \mathrm{b}$ | $(\mathrm{S}, \triangleleft)$ is a | in braid theory |
| :---: | :---: | :---: | :---: |
| $\mathbb{Z}\left[\mathrm{t}^{ \pm 1]}\right.$ Mod | $\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$ | quandle | Burau: $\mathrm{B}_{\mathrm{n}} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]\right)$ |
| group | $\mathrm{b}^{-1} \mathrm{ab}$ | quandle | Artin: $\mathrm{B}_{\mathfrak{n}} \hookrightarrow \operatorname{Aut}\left(\mathrm{F}_{\mathrm{n}}\right)$ |
| $\mathbb{Z}$ | $\mathrm{a}+1$ | rack | $\lg (w), \mathrm{lk}_{\mathrm{i}, \mathrm{j}}$ |
| free shelf $\mathcal{F}_{1}$ |  |  |  |



# Patrick Dehornoy <br> Braids and <br> Self-Distributivity 



Ferran Sunyer i Balaguer
Award winning monograph

Birkhäuser

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(4) Richard Laver \& Patrick Dehornoy, set theorists hiding from the I3 axiom
$\checkmark$ Elementary embeddings with the application operation.

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(4) Richard Laver \& Patrick Dehornoy, set theorists hiding from the I3 axiom
$\checkmark$ Elementary embeddings with the application operation.
Two realisations of the free shelf $\mathcal{F}_{1}$

1. Elementary embeddings of certain ranks.

I3 axiom: These ranks do exist.

Self-distributivity: $(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
(4) Richard Laver \& Patrick Dehornoy, set theorists hiding from the I3 axiom
$\checkmark$ Elementary embeddings with the application operation.
Two realisations of the free shelf $\mathcal{F}_{1}$

1. Elementary embeddings of certain ranks.

I3 axiom: These ranks do exist.
2. Braids.
$\square$
(4) Richard Laver \& Patrick Dehornoy, set theorists hiding from the I3 axiom
$\checkmark$ Elementary embeddings with the application operation.
Two realisations of the free shelf $\mathcal{F}_{1}$

1. Elementary embeddings of certain ranks.

I3 axiom: These ranks do exist.
2. Braids.

4. One more chapter

Laver table $A_{n}=\left\{1,2,3, \ldots, 2^{n}\right\}$ with the unique operation $\triangleright$ satisfying $a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c) \quad \& \quad a \triangleright 1 \equiv a+1 \bmod 2^{n}$.

| $A_{3}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
| 2 | 3 | 4 | 7 | 8 | 3 | 4 | 7 | 8 |
| 3 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |
| 5 | 6 | 8 | 6 | 8 | 6 | 8 | 6 | 8 |
| 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 |
| 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Laver table $A_{n}=\left\{1,2,3, \ldots, 2^{n}\right\}$ with the unique operation $\triangleright$ satisfying $a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c) \quad \& \quad a \triangleright 1 \equiv a+1 \bmod 2^{n}$.

Elementary definition and some elementary properties:
$\checkmark$ One generator: 1 .
$1 \triangleright 1=2$,
$(1 \triangleright 1) \triangleright 1=3$,

| $A_{3}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
| 2 | 3 | 4 | 7 | 8 | 3 | 4 | 7 | 8 |
| 3 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |
| 5 | 6 | 8 | 6 | 8 | 6 | 8 | 6 | 8 |
| 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 |
| 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

4 One more chapter
Laver table $A_{n}=\left\{1,2,3, \ldots, 2^{n}\right\}$ with the unique operation $\triangleright$ satisfying $a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c) \quad \& \quad a \triangleright 1 \equiv a+1 \bmod 2^{n}$.

Elementary definition and some elementary properties:
$\checkmark$ One generator: 1 .
$1 \triangleright 1=2$,
$(1 \triangleright 1) \triangleright 1=3$,
$\checkmark A_{n} \cong \mathcal{F}_{1} /(\cdots((1 \triangleright 1) \triangleright 1) \cdots) \triangleright 1=1$.

| $A_{3}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
| 2 | 3 | 4 | 7 | 8 | 3 | 4 | 7 | 8 |
| 3 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |
| 5 | 6 | 8 | 6 | 8 | 6 | 8 | 6 | 8 |
| 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 |
| 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

## 4/ One more chapter

Laver table $A_{n}=\left\{1,2,3, \ldots, 2^{n}\right\}$ with the unique operation $\triangleright$ satisfying $a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c) \quad \& \quad a \triangleright 1 \equiv a+1 \bmod 2^{n}$.

Elementary definition and some elementary properties:
$\checkmark$ One generator: 1 .
$1 \triangleright 1=2$,
$(1 \triangleright 1) \triangleright 1=3$,
$\checkmark A_{n} \cong \mathcal{F}_{1} /(\cdots((1 \triangleright 1) \triangleright 1) \cdots) \triangleright 1=1$.
$\checkmark$ Periodic rows.

| $A_{3}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
| 2 | 3 | 4 | 7 | 8 | 3 | 4 | 7 | 8 |
| 3 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |
| 5 | 6 | 8 | 6 | 8 | 6 | 8 | 6 | 8 |
| 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 |
| 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

$$
\begin{aligned}
& \pi_{3}(1)=4 \\
& \pi_{3}(2)=4 \\
& \pi_{3}(3)=2 \\
& \pi_{3}(4)=4 \\
& \pi_{3}(5)=2 \\
& \pi_{3}(6)=2 \\
& \pi_{3}(7)=1 \\
& \pi_{3}(8)=8
\end{aligned}
$$

## 4/ One more chapter

Laver table $A_{n}=\left\{1,2,3, \ldots, 2^{n}\right\}$ with the unique operation $\triangleright$ satisfying $a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c) \quad \& \quad a \triangleright 1 \equiv a+1 \bmod 2^{n}$.

Elementary definition and some elementary properties:
$\checkmark$ One generator: 1 .
$1 \triangleright 1=2$,
$(1 \triangleright 1) \triangleright 1=3$,
$\checkmark A_{n} \cong \mathcal{F}_{1} /(\cdots((1 \triangleright 1) \triangleright 1) \cdots) \triangleright 1=1$.
$\checkmark$ Periodic rows.

| $A_{3}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
| 2 | 3 | 4 | 7 | 8 | 3 | 4 | 7 | 8 |
| 3 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |
| 5 | 6 | 8 | 6 | 8 | 6 | 8 | 6 | 8 |
| 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 |
| 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

$$
\begin{aligned}
& \pi_{3}(1)=4 \\
& \pi_{3}(2)=4 \\
& \pi_{3}(3)=2 \\
& \pi_{3}(4)=4 \\
& \pi_{3}(5)=2 \\
& \pi_{3}(6)=2 \\
& \pi_{3}(7)=1 \\
& \pi_{3}(8)=8
\end{aligned}
$$

## The I3 axiom counter-attacks

Elementary conjectures:
$\checkmark \pi_{n}(1) \underset{n \rightarrow \infty}{\rightarrow} \infty . \quad \checkmark \pi_{n}(1) \leqslant \pi_{n}(2)$.

## The I3 axiom counter-attacks

Elementary conjectures:
$\checkmark \pi_{n}(1) \underset{n \rightarrow \infty}{\rightarrow} \infty . \quad \checkmark \pi_{n}(1) \leqslant \pi_{n}(2)$.
Theorems under the axiom I3!

## 5. The I3 axiom counter-attacks

Elementary conjectures:
$\checkmark \pi_{n}(1) \underset{n \rightarrow \infty}{\rightarrow} \infty . \quad \checkmark \pi_{n}(1) \leqslant \pi_{n}(2) . \quad \checkmark \underset{n \in \mathbb{N}}{\lim } A_{n} \supset \mathcal{F}_{1}$.
Theorems under the axiom I3!

## Sets




## Osaka, Japan

## 6 Some more topology



## Some more topology

 Knotted trivalent graphs:

## Motivation:

$\checkmark$ Knotted handle-bodies.

$\checkmark$ Boundaries of foams.

$\checkmark$ Form a finitely presented algebraic system ( $仓$ knots do not).

## 7 A challenge for self-distributivity?



## 7 A challenge for self-distributivity?

Diagram colorings by $(S, \triangleleft, \circ): \quad \begin{array}{ll}b \\ a\end{array} \lambda_{b}^{a \triangleleft b} \quad{ }_{a}^{b}{ }_{a}^{a \circ b} \quad \underset{a}{a \circ b}<_{a}^{b}$
Compatible with topology iff

$$
\begin{aligned}
& (a \circ b) \triangleleft c=(a \triangleleft c) \circ(b \triangleleft c), \\
& a \triangleleft(b \circ c)=(a \triangleleft b) \triangleleft c, \\
& a \circ b=b \circ(a \triangleleft b) .
\end{aligned}
$$



## 7 A challenge for self-distributivity?

Diagram colorings by $(S, \triangleleft, \circ): \quad \begin{array}{ll}b \\ a\end{array} \lambda_{b}^{a \triangleleft b} \quad{ }_{a}^{b}{ }_{a}^{a \circ b} \quad \underset{a}{a \circ b}<_{b}^{b}$
Compatible with topology iff

$$
\begin{aligned}
& (a \circ b) \triangleleft c=(a \triangleleft c) \circ(b \triangleleft c), \\
& a \triangleleft(b \circ c)=(a \triangleleft b) \triangleleft c, \\
& a \circ b=b \circ(a \triangleleft b) .
\end{aligned}
$$


$\sim$ Powerful invariants of branched braids.

## Laver tables again!

$\operatorname{Diagram}$ colorings by $(S, \triangleleft, \circ): \quad \begin{aligned} & b \\ & a\end{aligned} \lambda_{b}^{a} \begin{array}{ll}a \triangleleft b & b \\ b\end{array} \sum_{a}^{a \circ b}$

Compatible with topology iff

$$
\begin{aligned}
& (\mathrm{a} \circ \mathrm{~b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \circ(\mathrm{b} \triangleleft \mathrm{c}), \\
& \mathrm{a} \triangleleft(\mathrm{~b} \circ \mathrm{c})=(\mathrm{a} \triangleleft \mathrm{~b}) \triangleleft \mathrm{c}, \\
& \mathrm{a} \circ \mathrm{~b}=\mathrm{b} \circ(\mathrm{a} \triangleleft \mathrm{~b}) .
\end{aligned}
$$

Examples:
$\checkmark$ group $G$ with $g \triangleleft h=h^{-1} g h, g \circ h=g h$;


Compatible with topology iff

$$
\begin{aligned}
& (\mathrm{a} \circ \mathrm{~b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \circ(\mathrm{b} \triangleleft \mathrm{c}), \\
& \mathrm{a} \triangleleft(\mathrm{~b} \circ \mathrm{c})=(\mathrm{a} \triangleleft \mathrm{~b}) \triangleleft \mathrm{c}, \\
& \mathrm{a} \circ \mathrm{~b}=\mathrm{b} \circ(\mathrm{a} \triangleleft \mathrm{~b}) .
\end{aligned}
$$

Examples:
$\checkmark$ group $G$ with $g \triangleleft h=h^{-1} g h, g \circ h=g h$;
$\checkmark$ Laver tables with $p \circ q=p \triangleright(q+1)-1$.


Compatible with topology iff

$$
\begin{aligned}
& (a \circ b) \triangleleft c=(a \triangleleft c) \circ(b \triangleleft c), \\
& a \triangleleft(b \circ c)=(a \triangleleft b) \triangleleft c \\
& a \circ b=b \circ(a \triangleleft b) .
\end{aligned}
$$

Examples:
$\checkmark$ group $G$ with $g \triangleleft h=h^{-1} g h, g \circ h=g h$;
$\checkmark$ Laver tables with $p \circ q=p \triangleright(q+1)-1$.
False for the free shelf $\mathcal{F}_{1}$ !

