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/\1\/\An exotic axiom for classical structures

Self-distributivity: ‘ (a<db)<dc=(a<c)<(bxc) ‘

(2) Gavin Wraith, a bored school boy
v Abelian group A,t: A - A, a<b=ta+ (1 —1)b.

p Q PQ

v Any group G with g <<h = h~'gh.
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X2/ From curiosity to a theory

B, (braid group) RII

(a<db)<dc=(a<c)<(bxc) | shelf

acts on S™ RII Vb, @ <1 b is invertible rack
S < (S™)Bn (RI) ada=a quandle
ar (a,...,a)
a— B r— aB
Examples:
S a<b (S,<) isa in braid theory
ziezMod | ta+ (1 —t)b | quandle | Burau: B, — GL, (Z[t%)])

group b~ Tab quandle Artin: By, — Aut(Fy,)

Z a+1 rack lg(w), Ik

free shelf I Dehornoy: order on By,
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><3X Building bridges

Self-distributivity: ‘ (a<db)<dc=(a<c)<(bxc) ‘

(@) Richard Laver & Patrick Dehornoy, set theorists hiding from the 13 axiom
v Elementary embeddings with the application operation.

Two realisations of the free shelf F;
1. Elementary embeddings of certain ranks.
I3 axiom: These ranks do exist.

2. Braids.

realisation

| free shelf| | braids |

\/
colorings
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Laver table A}, = { 1,2,3,...,2" } with the unique operation > satisfying

ar>(b>c)=(a>b)>(ar>c) & a>1l=a+1 mod2™.
A; |1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
213 4 7 8 3 4 7 8
314 8 4 8 4 8 4 8
4 |5 6 7 8 5 6 7 8
516 8 6 8 6 8 6 8
6 |7 8 7 8 7 8 7 8
718 8 8 8 8 8 8 8
8§ |1 2 3 4 5 6 7 8
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Laver table A;, = { 1,2,3,...,2" } with the unique operation > satisfying
ar>(b>c)=(a>b)>(ar>c) & a>1l=a+1 mod2™.

Elementary definition and some elementary properties:
v One generator: 1. 1>1=2 (I1)>1=3,

VALET /()1 )T =1
v’ Periodic rows.

As|1 2 3 4 5 6 7 8

T 12 4 6 8 3 (1) =4
213 4 7 8 7 8 n3(2) =4
304 8 8 n3(3) =2
4156 7 85 6 7 8 n3(4) =4
516 8 8 n3(5) =2
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/\5\/\The I3 axiom counter-attacks

Elementary conjectures:

v nn(])njoo 0. vV (1) < e (2). v I<i11AnD%
neN

Theorems under the axiom 13!
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&/ Some more topology

Knotted B
trivalent B
graphs: B

Motivation:
<——
v Knotted handle-bodies. 7 ;E /\>>

v/ Boundaries of foams.

v/ Form a finitely presented algebraic system (/\ knots do not).
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KA A challenge for self-distributivity?

b b
. . byra<b  “hgob aclk
Diagram colorings by (S, <, o): a k b a a

Compatible with topology iff
(aob)<dc=(a<c)o(b<c),
a<(boc)=(a<b)<ec,
aob=Dbo(axb).

c a<(boc) c (a<b)<c

—_—
b boc/ gy b e
— N

~» Powerful invariants of branched braids.
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8 Laver tables again!

b b
| . b~ a<b y b a %
Diagram colorings by (S, <, 0): a k b a a

Compatible with topology iff
(aob)<dc=(a<c)o(b<c),

a<(boc)=(a<b)<ec,
aob=Dbo(a<xb).

Examples:

v group G withg <h =h~"gh, goh = gh;
v Laver tables withpoq=p > (q+1)—1.
/\ False for the free shelf 37!
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