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✓ Abelian group A, t : A→ A, a � b = ta+ (1− t)b.

P Q PQ

1 −t

P Q PQ

PRQR

R

(PQ)R =
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✓ Any group G with g � h = h−1gh.
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Bn (braid group) RIII (a � b) � c = (a � c) � (b � c) shelf

acts on Sn RII ∀b, • � b is invertible rack

S →֒ (Sn)Bn (RI) a � a = a quandle

a 7→ (a, . . . , a)

β aβa

Examples:

S a � b (S,�) is a in braid theory

Z[t±1]Mod ta + (1− t)b quandle Burau: Bn → GLn(Z[t
±])

group b−1ab quandle Artin: Bn →֒ Aut(Fn)

Z a+ 1 rack lg(w), lki,j
free shelf F1 Dehornoy: order on Bn
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5 The I3 axiom counter-a�acks

Elementary conjectures:

✓ πn(1) →
n→∞

∞. ✓ πn(1) 6 πn(2). ✓ lim
←−
n∈N

An ⊃ F1.

Theorems under the axiom I3!
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6 Some more topology

Kno�ed

trivalent
graphs:

Θst ΘKT

Motivation:

✓ Kno�ed handle-bodies.
←→

✓ Boundaries of foams.

✓ Form a finitely presented algebraic system (B knots do not).
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; Powerful invariants of branched braids.
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Examples:
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B False for the free shelf F1!
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