Une promenade dans le livre vert

Victoria LEBED, Université Caen Normandie

Le Havre 2019

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

✓ More generally : abelian group A with $a \triangleleft b = 2b - a$.

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(2) Gavin Wraith, a bored school boy

✓ Abelian group A, t: A → A, $a \triangleleft b = ta + (1 - t)b$.

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(2) Gavin Wraith, a bored school boy

 $\checkmark \text{ Abelian group } A, t \colon A \to A, \ a \lhd b = ta + (1-t)b.$

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(2) Gavin Wraith, a bored school boy

 $\checkmark \text{ Abelian group } A, t \colon A \to A, \ a \lhd b = ta + (1-t)b.$

✓ Any group G with $g \triangleleft h = h^{-1}gh$.

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

③ David Joyce & Sergei Matveev,

knot colorists separated by the Iron Curtain

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(3) David Joyce & Sergei Matveev, knot colorists separated by the Iron Curtain

Diagram colorings by (S, \lhd) b $a \lhd b$ $a \lhd b$ $b \land b$ for braids: b $b \land b$ $b \land b$ $b \land b$

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

③ David Joyce & Sergei Matveev, knot colorists separated by the Iron Curtain

Diagram colorings by (S, \lhd) ba $\lhd b$ a $\lhd b$ for braids:abb

$$\begin{array}{c} c \\ b \\ a \end{array} \xrightarrow{(a \triangleleft b) \triangleleft c} \\ c \\ c \\ \end{array} \begin{array}{c} \mathsf{RIII} \\ \sim \\ \mathsf{RIII} \\ \sim \end{array}$$

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

③ David Joyce & Sergei Matveev, knot colorists separated by the Iron Curtain

 $\begin{array}{cccc} \text{Diagram colorings by } (S, \lhd) & b & a \lhd b & a \lhd b \\ \text{for braids:} & a & b & b \\ \end{array} \begin{array}{c} b & b & b \\ b & b & b \\ \end{array} \begin{array}{c} a & a & b \\ b & b & b \\ \end{array} \begin{array}{c} b & a & a & b \\ b & b & b \\ \end{array} \begin{array}{c} c & a & a & b \\ b & b & b \\ \end{array} \begin{array}{c} c & a & a & b \\ b & b & b \\ \end{array} \begin{array}{c} c & a & a & b \\ b & b & b \\ \end{array} \begin{array}{c} c & a & a & b \\ b & b & b \\ \end{array} \begin{array}{c} c & a & a & b \\ c & a & b \\ c & b & b \\ \end{array}$

$$\begin{array}{c} c & \longrightarrow (a \triangleleft b) \triangleleft c \\ b & \swarrow b \triangleleft c \\ a & \swarrow c \\ \end{array} \begin{array}{c} \mathsf{RIII} \\ \sim \\ \mathsf{RIII} \\ \sim \\ \mathsf{RIII} \\ \mathsf{RIIII} \\ \mathsf{RIII} \\ \mathsf{RIIII \\ \mathsf{RIII} \\ \mathsf{RIII} \\ \mathsf{RIII} \\ \mathsf{RIIII} \\ \mathsf{RIIII \\ \mathsf{RIII} \\ \mathsf{RIIII} \\ \mathsf{RIIII \\ \mathsf{RIII} \\ \mathsf{RIIII \\ \mathsf{RIIII} \\ \mathsf{RIIII \\ \mathsf{RIIII \\ \mathsf{RIIII \\ \mathsf{RIIII} \\ \mathsf{RIIIIII \\ \mathsf{R$$

$$c \qquad (a \triangleleft c) \triangleleft (b \triangleleft c)$$

$$b \qquad b \triangleleft c$$

$$a \qquad c$$

B _n (braid group)	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$
acts on S ⁿ	RII	$orall {b}, ullet \lhd {b}$ is invertible

B _n (braid group)	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$
acts on S ⁿ	RII	$\forall b, ullet \lhd b$ is invertible
$S \hookrightarrow (S^n)^{B_n}$	(RI)	$a \lhd a = a$
	. ,	

 $a \mapsto (a, \ldots, a)$

B _n (braid group)	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$	shelf
acts on S ⁿ	RII	$\forall b, \bullet \lhd b$ is invertible	rack
$S \hookrightarrow (S^n)^{B_n}$	(RI)	$a \lhd a = a$	quandle
$a \mapsto (a = a)$			

 $a \mapsto (a, \ldots, a)$

B _n (braid group)	RIII	$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$	shelf
acts on S ⁿ	RII	$orall {b}, ullet \lhd {b}$ is invertible	rack
$S \hookrightarrow (S^n)^{B_n}$	(RI)	$a \lhd a = a$	quandle
$a \mapsto (a, \ldots, a)$			

 $a \mapsto (a, \ldots, a)$

Examples:

S	$a \lhd b$	(S, \lhd) is a	in braid theory
$\mathbb{Z}[t^{\pm 1}]Mod$	ta + (1-t)b	quandle	Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm}])$
group	b ⁻¹ ab	quandle	$Artin:\ B_{\mathfrak{n}} \hookrightarrow Aut(F_{\mathfrak{n}})$
\mathbb{Z}	a + 1	rack	$lg(w), lk_{i,j}$
	free shelf \mathcal{F}_1		Dehornoy: order on B_n

 $\mathsf{Self-distributivity:} \ | \ (\mathfrak{a} \lhd \mathfrak{b}) \lhd \mathfrak{c} = (\mathfrak{a} \lhd \mathfrak{c}) \lhd (\mathfrak{b} \lhd \mathfrak{c})$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom

✓ Elementary embeddings with the application operation.

Suilding bridges $\times 3$

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom

✓ Elementary embeddings with the application operation.

Two realisations of the free shelf \mathcal{F}_1

1. Elementary embeddings of certain ranks. I3 axiom: These ranks do exist.

Suilding bridges $\times 3$

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom

✓ Elementary embeddings with the application operation.

Two realisations of the free shelf \mathcal{F}_1

1. Elementary embeddings of certain ranks. I3 axiom: These ranks do exist.

2. Braids.

X3X Building bridges

Self-distributivity: $(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$

(4) Richard Laver & Patrick Dehornoy, set theorists hiding from the I3 axiom

✓ Elementary embeddings with the application operation.

Two realisations of the free shelf \mathcal{F}_1

1. Elementary embeddings of certain ranks.

I3 axiom: These ranks do exist.

2. Braids.

Laver table $A_n = \{1, 2, 3, ..., 2^n\}$ with the unique operation \triangleright satisfying $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a + 1 \mod 2^n$.

A_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

Laver table $A_n = \{1, 2, 3, ..., 2^n\}$ with the unique operation \triangleright satisfying $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a + 1 \mod 2^n$.

Elementary definition and some elementary properties:

✓ One generator: 1. $1 \triangleright 1 = 2$, $(1 \triangleright 1) \triangleright 1 = 3$, ...

A_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

Laver table $A_n = \{1, 2, 3, ..., 2^n\}$ with the unique operation \triangleright satisfying $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a + 1 \mod 2^n$.

Elementary definition and some elementary properties:

 $\checkmark \text{ One generator: } 1. \qquad 1 \vartriangleright 1 = 2, \qquad (1 \vartriangleright 1) \vartriangleright 1 = 3, \qquad \dots$ $\checkmark A_n \cong \mathcal{F}_1 / (\dots ((1 \vartriangleright 1) \vartriangleright 1) \dots) \rhd 1 = 1.$

A_3	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

Laver table $A_n = \{1, 2, 3, ..., 2^n\}$ with the unique operation \triangleright satisfying $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a + 1 \mod 2^n$.

Elementary definition and some elementary properties:

- ✓ One generator: 1. $1 \triangleright 1 = 2$, $(1 \triangleright 1) \triangleright 1 = 3$, ... ✓ $A_n \cong \mathcal{F}_1 / (\dots ((1 \triangleright 1) \triangleright 1) \dots) \triangleright 1 = 1$.
- ✓ Periodic rows.

A_3	1	2	3	4	5	6	7	8	
1	2	4	6	8	2	4	6	8	$\pi_3(1) = 4$
2	3	4	7	8					$\pi_3(2) = 4$
3	4	8							$\pi_3(3) = 2$
4	5	6	7	8					$\pi_3(4) = 4$
5	6	8							$\pi_3(5) = 2$
6	7	8							$\pi_3(6) = 2$
7	8								$\pi_3(7) = 1$
8	1	2	3	4	5	6	7	8	$\pi_3(8) = 8$

Laver table $A_n = \{1, 2, 3, ..., 2^n\}$ with the unique operation \triangleright satisfying $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$ & $a \triangleright 1 \equiv a + 1 \mod 2^n$.

Elementary definition and some elementary properties:

- ✓ One generator: 1. $1 \triangleright 1 = 2$, $(1 \triangleright 1) \triangleright 1 = 3$, ... ✓ $A_n \cong \mathcal{F}_1 / (\dots ((1 \triangleright 1) \triangleright 1) \dots) \triangleright 1 = 1$.
- ✓ Periodic rows.

A_3	1	2	3	4	5	6	7	8	
1	2	4	6	8	2	4	6	8	$\pi_3(1) = 4$
2	3	4	7	8			7	8	$\pi_3(2) = 4$
3	4	8						8	$\pi_3(3) = 2$
4	5	6	7	8	5	6	7	8	$\pi_3(4) = 4$
5	6	8						8	$\pi_3(5) = 2$
6	7	8					7	8	$\pi_3(6) = 2$
7	8							8	$\pi_3(7) = 1$
8	1	2	3	4	5	6	7	8	$\pi_3(8) = 8$

5 The I3 axiom counter-attacks

Elementary conjectures:

$$\checkmark \ \pi_n(1) \underset{n \to \infty}{\to} \infty. \qquad \qquad \checkmark \ \pi_n(1) \leqslant \pi_n(2).$$

5 The I3 axiom counter-attacks

Elementary conjectures:

$$\checkmark \ \pi_n(1) \underset{n \to \infty}{\to} \infty. \qquad \qquad \checkmark \ \pi_n(1) \leqslant \pi_n(2).$$

Theorems under the axiom I3!

 $\sqrt{5}$ The I3 axiom counter-attacks

Elementary conjectures:

$$\checkmark \ \pi_n(1) \underset{n \to \infty}{\to} \infty. \qquad \checkmark \ \pi_n(1) \leqslant \pi_n(2). \qquad \checkmark \ \varprojlim_{n \in \mathbb{N}} A_n \supset \mathfrak{F}_1.$$

Theorems under the axiom I3!

Osaka, Japan

 \checkmark Form a finitely presented algebraic system (<u>A</u> knots do not).

A challenge for self-distributivity?

Diagram colorings by $(S, \triangleleft, \circ)$:

A challenge for self-distributivity?

Diagram colorings by
$$(S, \triangleleft, \circ)$$
: $\begin{array}{c} b \\ a \end{array} \xrightarrow{a \triangleleft b} \begin{array}{c} b \\ b \end{array} \xrightarrow{a \circ b} \begin{array}{c} a \circ b \\ a \end{array} \xrightarrow{b} \begin{array}{c} b \\ a \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array}$

Compatible with topology iff

$$\begin{aligned} (a \circ b) \lhd c &= (a \lhd c) \circ (b \lhd c), \\ a \lhd (b \circ c) &= (a \lhd b) \lhd c, \\ a \circ b &= b \circ (a \lhd b). \end{aligned}$$

A challenge for self-distributivity?

Diagram colorings by
$$(S, \triangleleft, \circ)$$
: $\begin{array}{c} b \\ a \end{array} \xrightarrow{a \triangleleft b} \begin{array}{c} b \\ b \end{array} \xrightarrow{a \circ b} \begin{array}{c} a \circ b \\ a \end{array} \xrightarrow{b} \begin{array}{c} b \\ a \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \begin{array}{c} b \\ \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \end{array} \xrightarrow{b} \end{array}$

Compatible with topology iff

$$(a \circ b) \lhd c = (a \lhd c) \circ (b \lhd c),$$

$$a \lhd (b \circ c) = (a \lhd b) \lhd c,$$

$$a \circ b = b \circ (a \lhd b).$$

 \rightsquigarrow Powerful invariants of branched braids.

 $\times 8$ Laver tables again!

Diagram colorings by
$$(S, \triangleleft, \circ)$$
:
 $\begin{array}{c} b\\ a\end{array} \xrightarrow{a \triangleleft b} \begin{array}{c} b\\ b\end{array} \xrightarrow{a \circ b} \begin{array}{c} a \circ b\\ a\end{array} \xrightarrow{b} \begin{array}{c} a \circ b\\ a\end{array}$

ъ

Compatible with topology iff

$$(a \circ b) \lhd c = (a \lhd c) \circ (b \lhd c),$$

$$a \lhd (b \circ c) = (a \lhd b) \lhd c,$$

$$a \circ b = b \circ (a \lhd b).$$

Examples:

✓ group G with $g \triangleleft h = h^{-1}gh$, $g \circ h = gh$;

 $\times 8$ Laver tables again!

Diagram colorings by
$$(S, \triangleleft, \circ)$$
:
 $\begin{array}{c} b\\ a\end{array} \xrightarrow{a \triangleleft b} \begin{array}{c} b\\ b\end{array} \xrightarrow{a \circ b} \begin{array}{c} a \circ b \\ a\end{array} \xrightarrow{b} \begin{array}{c} a \circ b \\ a\end{array} \xrightarrow{b} \begin{array}{c} a \circ b \\ a\end{array} \xrightarrow{b} \begin{array}{c} a \circ b \\ a \end{array} \xrightarrow{b} \begin{array}{c} a \circ b \end{array} \xrightarrow{b} \begin{array}{c} a \circ \end{array}$

ъ

Compatible with topology iff

$$(a \circ b) \lhd c = (a \lhd c) \circ (b \lhd c),$$

$$a \lhd (b \circ c) = (a \lhd b) \lhd c,$$

$$a \circ b = b \circ (a \lhd b).$$

Examples:

- ✓ group G with $g \triangleleft h = h^{-1}gh$, $g \circ h = gh$;
- ✓ Laver tables with $p \circ q = p \triangleright (q + 1) 1$.

8 Laver tables again!

Diagram colorings by
$$(S, \triangleleft, \circ)$$
:
 $\begin{array}{c} b\\ a\end{array} \xrightarrow{a \triangleleft b} \begin{array}{c} a \triangleleft b\\ b\end{array} \xrightarrow{a \circ b} \begin{array}{c} a \circ b\\ a\end{array} \xrightarrow{b} \begin{array}{c} a \\ a\end{array}$

ъ

ъ

Compatible with topology iff

$$(a \circ b) \lhd c = (a \lhd c) \circ (b \lhd c),$$

$$a \lhd (b \circ c) = (a \lhd b) \lhd c,$$

$$a \circ b = b \circ (a \lhd b).$$

Examples:

- $\checkmark \text{ group } G \text{ with } g \lhd h = h^{-1}gh, \ g \circ h = gh;$
- ✓ Laver tables with $p \circ q = p ▷ (q + 1) 1$.

 \wedge False for the free shelf \mathcal{F}_1 !