# INVERSE SEMI-BRACES AND THE YANG-BAXTER EQUATION <br> Marzia Mazzotta - Università del Salento (Italy) <br> Algebra Days in Caen 2022: from Yang-Baxter to Garside, March 24-25 2022 

## Introduction

In the '90s, Drinfel'd [3] raised the still open issue of finding and classifying all set-theoretical solutions of the Yang-Baxter equation, a fundamental equation of statistical mechanics. If $S$ is a set, a map $r: S \times S \rightarrow S \times S$ is said to be a set theoretical solution of the Yang-Baxter equation, shortly a solution, if the relation

$$
\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)=\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)
$$

is satisfied. The algebraic structure of brace introduced by Rump [5] in 2007 as generalization of Jacobson radical ring is a tool to find solutions. In particular, any brace gives rise to an involutive solution $r$, i.e., $r^{2}=$ id. In this way, Rump traced a novel research direction and later fruitful results on this kind of solutions appeared.
Recently, we introduced the inverse semi-braces [2], more general structures than braces, that allow obtaining solutions that are not necessarily bijective.

## Inverse semi-braces

We recall that a semigroup $S$ is said to be an inverse semigroup if, for each $x \in S$, there exists a unique $x^{-1} \in S$ satisfying $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. In particular, $x x^{-1}$ and $x^{-1} x$ are idempotents.
Definition. Let $S$ be a set endowed of two operations + and $\cdot$ such that $(S,+)$ is a semigroup (not necessarily commutative) and $(S, \cdot)$ is an inverse semigroup. Then, $(S,+, \cdot)$ is an inverse semi-brace if

$$
\begin{equation*}
a(b+c)=a b+a\left(a^{-1}+c\right) \tag{1}
\end{equation*}
$$

holds, for all $a, b, c \in S$.
Semi-braces [1, 4] are instances of inverse semi-braces with $(S, \cdot)$ a group. In addition, if $(S,+)$ is an abelian group, then the semi-brace $S$ is a brace.

Example 1. Every inverse semigroup $(S, \cdot)$ having central idempotents gives rise to two inverse semi-braces, setting $a+b=a b$ or $a+b=b a$, for all $a, b \in S$.

Example 2. If ( $S, \cdot$ ) is an inverse semigroup and $(S,+$ ) is a right zero semigroup (or a left zero semigroup), then $S$ is an inverse semi-brace.

## Contact Information

, marzia.mazzotta@unisalento.it

## Solutions associated to inverse semi-braces

Let $S$ be an inverse semi-brace, $\lambda: S \rightarrow \operatorname{End}(S,+), a \mapsto \lambda_{a}$ and $\rho: S \rightarrow S^{S}, b \mapsto \rho_{b}$ the maps respectively defined by

$$
\lambda_{a}(b)=a\left(a^{-1}+b\right) \quad \rho_{b}(a)=\left(a^{-1}+b\right)^{-1} b,
$$

for all $a, b \in S$. Then, we call the map $r_{S}: S \times S \rightarrow S \times S$ given by

$$
r_{S}(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right),
$$

for all $a, b \in S$, the map associated to the inverse semi-brace $S$.
The following are sufficient conditions to obtain solutions through inverse semi-braces.
Theorem 1 Let $S$ be an inverse semi-brace and $r_{S}$ the map associated to $S$. If the following conditions are satisfied

1. $(a+b)(a+b)^{-1}(a+b c)=a+b c$
2. $\lambda_{a}(b)^{-1}+\lambda_{\rho_{b}(a)}(c)=\lambda_{a}(b)^{-1}+\lambda_{\left(a^{-1}+b\right)^{-1}} \lambda_{b}(c)$
3. $\rho_{b}(a)^{-1}+c=\left(b^{-1}+c\right)\left(\rho_{\lambda_{b}(c)}(a)^{-1}+\rho_{c}(b)\right)$,
for all $a, b, c \in S$, then the map $r_{S}$ is a solution.
In general, solutions associated to inverse semi-braces are not bijective.

The previous examples of inverse semi-braces satisfy the conditions of Theorem 1.

## Examples

1 The map $r_{S}$ associated to $S$ in Example 2 with $a+b=a b$ and the $\operatorname{map} t_{S}$ associated to $S$ with $a+b=b a$ are respectively given by

$$
r_{S}(a, b)=\left(a a^{-1} b, b^{-1} a b\right) \quad t_{S}(a, b)=\left(a b a^{-1}, a b b^{-1}\right)
$$

and are solutions

2 The map $r_{S}$ associated to $S$ in Example 1 with $(S,+)$ a right zero semigroup is given by

$$
r_{S}(a, b)=\left(a b, b^{-1} b\right)
$$

and is an idempotent solution. Similarly, if $(S,+)$ a left zero semigroup, we get the idempotent solution

$$
r_{S}(a, b)=\left(a a^{-1}, a b\right)
$$

Note that if $|S|>1$ such solutions are not isomorphic. In addition, it is clear that the number of inverse semigroups determines a lower bound for idempotent solutions.

## The double semidirect product of inverse semi-braces

Theorem 2 Let $S$ and $T$ be two inverse semi-braces, $\sigma: T \rightarrow \operatorname{Aut}(S)$ a homomorphism from $(T, \cdot)$ into the automorphism group of the inverse semi-brace $S$, and $\delta: S \rightarrow \operatorname{End}(T)$ an anti-homomorphism from $(S,+)$ into the endomorphism semigroup of $(T,+)$. Set ${ }^{u} a:=\sigma(u)(a)$ and $u^{a}:=\delta(a)(u)$, for all $a \in S$ and $u \in T$, if it holds

$$
\begin{equation*}
(u v)^{\lambda_{a}\left({ }^{(u b)}\right.}+u\left(\left(u^{-1}\right)^{b}+w\right)=u\left(v^{b}+w\right), \tag{2}
\end{equation*}
$$

then $B:=S \times T$ with respect to the operations

$$
(a, u)+(b, v):=\left(a+b, u^{b}+v\right) \quad(a, u)(b, v):=\left(a^{u} b, u v\right),
$$

is an inverse semi-brace. We call such an inverse semi-brace $B$ the double semidirect product of $S$ and $T$ via $\sigma$ and $\delta$.
Set $\Omega_{u, v}^{a}:=\left(u^{-1}\right)^{a}+v$, for all $a \in S, u, v \in T$, the map $r_{B}$ associated to $B$ is given by
$r_{B}((a, u),(b, v))=\left(\left(\lambda_{a}\left({ }^{u} b\right), u \Omega_{u, v}^{b}\right),\left({\left.\left.\left(\Omega_{u, v}^{b}\right)^{-1} u^{-1} \rho_{u b}(a),\left(\Omega_{u, v}^{b}\right)^{-1} v\right)\right), ~}\right.\right.$
In the particular case of $S$ and $T$ semi-braces, we have the following result.
Theorem 3 Let $S, T$ be semi-braces and $B$ the double semidirect product of $S$ and $T$ via $\sigma$ and $\delta$. If $r_{S}$ and $r_{T}$ are solutions associated to $S$ and $T$, respectively, and the following are satisfied

1. $\left(u^{1}\right)^{a}=u^{a}$,
2. $1^{a}+u=1+u$
for all $a \in S$ and $u \in T$, then the map $r_{B}$ associated to $B$ is a solution.

## References

[1] F. Catino, I. Colazzo, and P. Stefanelli. Semi-braces and the YangBaxter equation. J. Algebra, 483:163-187, 2017.
[2] F. Catino, M. Mazzotta, and P. Stefanelli. Inverse semi-braces and the Yang-Baxter equation. J. Algebra, 573:576-619, 2021.
[3] V. G. Drinfel' d. On some unsolved problems in quantum group theory. In Quantum groups (Leningrad, 1990), volume 1510 of Lecture Notes in Math., pages 1-8. Springer, Berlin, 1992.
[4] E. Jespers and A. Van Antwerpen. Left semi-braces and solutions of the Yang-Baxter equation. Forum Math., 31(1):241-263, 2019.
[5] W. Rump. Braces, radical rings, and the quantum Yang-Baxter equa tion. J. Algebra, 307(1):153-170, 2007.

