Homotopical tools for computing rack homology

Victoria LEBED, University of Caen Normandy (France) Joint work with Markus SZYMIK, NTNU (Norway)

(Virtual) Paris, January 2021

$$
\begin{gathered}
(\mathrm{a} \triangleleft \mathrm{~b}) \triangleleft \mathrm{c}= \\
(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})
\end{gathered}
$$

$$
\mathrm{a} \triangleleft \mathrm{~b}=\phi(\mathrm{a})
$$

How topologists discovered self-distributivity

D. Joyce \& S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation \triangleleft.
(S, \triangleleft)-colourings for knot diagrams:

$$
\mathrm{a} \triangleleft \mathrm{~b}=\mathrm{c}, \quad \mathrm{~b} \triangleleft \mathrm{c}=\mathrm{a}, \quad \mathrm{c} \triangleleft \mathrm{a}=\mathrm{b}
$$

> cf. Wirtinger presentation of $\pi_{1}\left(\mathbb{R}^{3} \backslash \mathrm{~K}\right)$:

$$
x \triangleleft y=y^{-1} x y
$$

(S, \triangleleft)-colourings for knot diagrams:

$$
\mathrm{a} \triangleleft \mathrm{~b}=\mathrm{c}, \quad \mathrm{~b} \triangleleft \mathrm{c}=\mathrm{a}, \quad \mathrm{c} \triangleleft \mathrm{a}=\mathrm{b}
$$

RIII	$(\mathrm{a} \triangleleft \mathrm{b}) \triangleleft \mathrm{c}=(\mathrm{a} \triangleleft \mathrm{c}) \triangleleft(\mathrm{b} \triangleleft \mathrm{c})$
shelf	
RII	$\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a} \triangleleft \mathrm{b}$ is bijective
rack	
RI	$\mathrm{a} \triangleleft \mathrm{a}=\mathrm{a}$
quandle	

Proposition: (S, \triangleleft) is a quandle \Longrightarrow
\# $\{(S, \triangleleft)$-colourings of diagrams $\}$ is a knot invariant.

Example: $\left(\mathbb{Z}_{3}, \mathrm{a} \triangleleft \mathrm{b}=2 \mathrm{~b}-\mathrm{a}\right)$

3 colourings

9 colourings

Theorem (Joyce \& Matveev '82):
These invariants have a good reason to be strong.

An example of a quandle

Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin, and Gavin Wraith, a bored US school boy in the '50s:

More generally: geometric symmetries.
Another example you might like: Coxeter racks
$\left(\mathrm{V} \backslash\{0\}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{a}-2 \frac{\langle\mathrm{a}, \mathrm{b}\rangle}{\langle\mathrm{b}, \mathrm{b}\rangle} \mathrm{b}\right)$,
where V is a vector spaces endowed with a nice form.

3/ Braids and self-distributivity

One can play the same game with braids, and obtain actions of the braid groups B_{n} out of rack colourings.

S	$\mathrm{a} \triangleleft \mathrm{b}$	$(\mathrm{S}, \triangleleft)$	in braid theory it yields
$\mathbb{Z}\left[\mathrm{t}^{ \pm 1]}\right.$ Mod	$\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$	Al. quandle	Burau: $\mathrm{B}_{\mathrm{n}} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]\right)$
group	$\mathrm{b}^{-1} \mathrm{ab}$	conj. quandle	Artin: $\mathrm{B}_{\mathrm{n}} \hookrightarrow$ Aut $\left(\mathrm{F}_{\mathrm{n}}\right)$
twisted Alexander quandle		Lawrence-Krammer-Bigelow	
\mathbb{Z}	$\mathrm{a}+1$	rack	lg $(w), l k_{i, j}$
free shelf			

diagrams:
colorings:
coloring sets:

D	$\stackrel{\text { R-move }}{\rightsquigarrow}$	D^{\prime}
C	\rightsquigarrow	\mathcal{C}^{\prime}

$\operatorname{Col}_{s, \triangleleft}(\mathrm{D}) \quad \stackrel{1: 1}{\longleftrightarrow} \quad \mathrm{Col}_{s, \triangleleft}\left(\mathrm{D}^{\prime}\right)$

Counting invariants: $\# \operatorname{Col}_{S, \triangleleft}(\mathrm{D})=\#_{\operatorname{Col}_{S, \triangleleft}}\left(\mathrm{D}^{\prime}\right)$.

Question: Extract more information?

$$
\begin{gathered}
\omega(\mathcal{C})=\omega\left(\mathcal{C}^{\prime}\right) \\
\Downarrow \\
\left\{\omega(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{S, \triangleleft}(\mathrm{D})\right\} \stackrel{\left.\left(\mathcal{C}^{\prime}\right) \mid \mathcal{C}^{\prime} \in \operatorname{Col}_{S, \triangleleft}\left(\mathrm{D}^{\prime}\right)\right\} .}{=\{\omega}
\end{gathered}
$$

Answer (Carter-Jelsovsky-Kamada-Langford-Saito '03): State-sums over crossings, and Boltzmann weights:

$$
\phi: S \times S \rightarrow \mathbb{Z}_{\mathrm{m}} \quad \sim \quad \omega_{\phi}(\mathcal{C})=\sum_{\substack{b \\ a}} \pm \phi(a, b)
$$

Conditions on ϕ :

$\underset{\sim}{\mathrm{RI}}$

Quandle cocycle invariants: $\left\{\omega_{\phi}(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})\right\}$.

$$
\phi: S \times S \rightarrow \mathbb{Z}_{\mathfrak{m}} \quad \sim \quad \omega_{\phi}(\mathcal{C})=\sum_{\substack{ \\a}} \pm \phi(a, b)
$$

Quandle cocycle invariants: $\left\{\omega_{\phi}(\mathcal{C}) \mid \mathcal{C} \in \operatorname{Col}_{S, \triangleleft}(\mathrm{D})\right\}$.
Example: $\phi=0 \quad \sim \quad$ counting invariants.
Quandle cocycle invariants \supseteq counting invariants.
Generalisation: $K^{n} \hookrightarrow \mathbb{R}^{n+2}$ and $\phi: S^{\times(n+1)} \rightarrow \mathbb{Z}_{\mathrm{m}}$.
Wish:
$d^{n+1} \phi=0 \Longrightarrow \phi$ refines counting invariants for n-knots, $\phi=d^{n} \psi \Longrightarrow$ the refinement is trivial.

5. The desired cohomology theory

Fenn et al. ' 95 \& Carter et al. '03 \& Graña '00:
Shelf $(S, \triangleleft) \&$ abelian group $X \sim$ cochain complex

$$
\begin{aligned}
& C_{R}^{k}(S, X)=\operatorname{Map}\left(S^{\times k}, X\right) \\
& \begin{aligned}
\left(d_{R}^{k} f\right)\left(a_{1}, \ldots, a_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i-1}\left(f\left(a_{1}, \ldots, \widehat{a_{i}}, \ldots, a_{k+1}\right)\right. \\
& \left.-f\left(a_{1} \triangleleft a_{i}, \ldots, a_{i-1} \triangleleft a_{i}, a_{i+1}, \ldots, a_{k+1}\right)\right)
\end{aligned}
\end{aligned}
$$

\sim Rack cohomology $H_{R}^{k}(S, X)=\operatorname{Ker} d_{R}^{k} / \operatorname{Im} d_{R}^{k-1}$.
Quandle $(S, \triangleleft) \&$ abelian group $X \sim$ sub-complex of $\left(C_{R}^{k}, d_{R}^{k}\right)$:

$$
C_{Q}^{k}(S, X)=\left\{f: S^{\times k} \rightarrow X \mid f(\ldots, a, a, \ldots)=0\right\}
$$

\sim Quandle cohomology $\mathrm{H}_{\mathrm{Q}}^{\mathrm{k}}(\mathrm{S}, \mathrm{X})$.

This is what we were looking for! This construction yields:
\checkmark Boltzmann weights for constructing higher knot invariants (powerful and easy to compute);
\checkmark a parametrisation of abelian rack extensions;
\checkmark an important class of braided vector spaces giving nice Hopf algebras.

How Hopf algebraists discovered SD

Very open question: Classify f.-d. pointed Hopf algebras over \mathbb{C}.

Applications:

\checkmark cohomology of H-spaces, e.g. Lie groups (Hopf '41);
\checkmark invariants of knots and 3-manifolds, TQFT;
\checkmark non-commutative geometry;
\checkmark condensed-matter physics, string theory,

Examples:

\checkmark group algebras $\mathbb{k} G$;
\checkmark enveloping algebras of Lie algebras $\mathrm{U}(\mathfrak{g})$;
\checkmark quantum groups: deformations $\mathrm{U}_{\mathrm{q}}(\mathfrak{g})$ for semisimple \mathfrak{g},

Classification program (Andruskiewitsch-Graña-Schneider '98):
nice Hopf algebra A
ζ
Yetter-Drinfel'd module $V \in \underset{H}{H} Y D$

$$
\text { braided vector space }(V, \sigma) \quad \sim \operatorname{rack}(S, \triangleleft) \& \phi: S \times S \rightarrow \mathbb{Z}_{\mathfrak{m}}
$$

Nichols algebra $B(V)$
bosonization Hopf algebra $\mathrm{B}(\mathrm{V}) \# \mathrm{H}$

$$
\& V \in{ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{YD}
$$

$\checkmark \mathrm{G}(A)=$ the group of group-like elements of $A, \quad H(A)=\mathbb{C} G(A)$;
$\checkmark \mathrm{R}(A)=$ coinvariants of $\operatorname{gr}(A) \rightarrow \operatorname{gr}(A)_{0}=\mathrm{H}(A), V(A)=\operatorname{Prim}(\mathrm{R}(A))$;
$\checkmark \sigma \in \operatorname{Aut}(\mathrm{V} \otimes \mathrm{V}), \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$,

$$
\text { where } \sigma_{1}=\sigma \times \mathrm{Id}_{\mathrm{S}}, \quad \sigma_{2}=\operatorname{Id}_{\mathrm{S}} \times \sigma
$$

\checkmark in red: "arrows with a large image";
$\checkmark \operatorname{gr}(A) \cong \mathrm{R}(A) \# \mathrm{H}(A)=[$ conjecturally $]=\mathrm{B}(\mathrm{V}(A)) \# \mathrm{H}(A)$.
braided vector space $\left(\mathbb{C S}, \sigma_{\triangleleft, \phi}\right) \sim \operatorname{rack}(S, \triangleleft) \& \phi: S \times S \rightarrow \mathbb{Z}_{m}$

$$
\sigma_{\triangleleft, \phi}:(a, b) \mapsto q^{\phi(a, b)}(b, a \triangleleft b)
$$

Here q is an mth root of unity, or transcendental.
Wish:

$$
\mathrm{d}^{2} \phi=0 \Longrightarrow\left(\mathbb{C S}, \sigma_{\triangleleft, \phi}\right) \text { is a braided vector space, }
$$

$$
\phi-\phi^{\prime}=\mathrm{d}^{1} \psi \Longrightarrow \text { the braided vector spaces are isomorphic. }
$$

$7 /$ Topological realization

Fenn-Rourke-Sanderson '95:
Shelf $(S, \triangleleft) \sim$ classifying space $B(S)$:
$\checkmark \mathrm{H}_{\mathrm{R}}^{\bullet}(\mathrm{S}, \mathrm{X}) \cong \mathrm{H}^{\bullet}(\mathrm{B}(\mathrm{S}), \mathrm{X})$;
\checkmark an explicit CW-complex, easy to define, hard to compute;
the only computations I am aware of are Fenn-Rourke-Sanderson '07:

1) trivial quandle $T_{n}=(\{1, \ldots, n\}, a \triangleleft b=a): \quad B\left(T_{n}\right) \cong \Omega\left(V_{n} \mathbb{S}^{2}\right)$;
2) free rack on n generators $F R_{n}: \quad B\left(F R_{n}\right) \cong V_{n} \mathbb{S}^{1}$;
\checkmark used to extract structural information on $H_{R}^{\bullet}(S, X)$, e.g. the cup product (even better: a Zinbiel product);
$\checkmark \pi_{1}(B(S)) \cong A s(S)$,
where $\operatorname{As}(S):=\langle S \mid a b=b(a \triangleleft b)\rangle$ is the associated group of (S, \triangleleft).

Interpretations of rack cohomology

\checkmark classifying space;
\checkmark quantum shuffles;
\checkmark pre-cubical cohomology;
\checkmark shelf \sim explicit d.g. bialgebra \leadsto cohomology;
\checkmark eperads.
(Serre '51, Baues '98, Clauwens '11, Covez '12, L. '13, L. '17,
Covez-Farinati-L.-Manchon '19.)

The associated group of (S, \triangleleft) :

$$
\operatorname{As}(\mathrm{S}):=\langle\mathrm{S} \mid \mathrm{ab}=\mathrm{b}(\mathrm{a} \triangleleft \mathrm{~b})\rangle
$$

Theorem (Joyce '82): One has a pair of adjoint functors

$$
\text { As : Rack } \rightleftarrows \text { Group : Conj . }
$$

Theorem (García Iglesias \& Vendramin '16): For a finite indecomposable quandle S,

$$
H_{R}^{2}(S, X) \cong X \times \operatorname{Hom}(N(S), X)
$$

Here $N(S)$ is a finite group (the stabilizer of an $a_{0} \in S$ in $[\operatorname{As}(S), \operatorname{As}(S)]$).

Theorem (Fenn-Rourke-Sanderson '95): There is a graded algebra morphism $\mathrm{HH}^{\bullet}(\operatorname{As}(\mathrm{S}), \mathrm{X}) \rightarrow \mathrm{H}_{\mathrm{R}}^{\bullet}(\mathrm{S}, \mathrm{X})$.

Theorem (Etingof-Graña '03): If (S, \triangleleft) is a rack and $\# \operatorname{lnn}(S) \in X^{*}$, then

$$
H_{R}^{k}(S, X) \cong X^{r^{k}}
$$

$\checkmark \operatorname{Orb}(S)=\{$ orbits of S w.r.t. $a \sim a \triangleleft b\}, r=\# \operatorname{Orb}(S)$;
$\checkmark \operatorname{lnn}(S)$ is the subgroup of $\operatorname{Aut}(S)$ generated by $t_{b}: a \mapsto a \triangleleft b$.

Bad news: If $\# \operatorname{lnn}(S) \in X^{*}$, then
quandle cocycle invariants = coloring invariants + linking numbers.
Hope: Look at $X=\mathbb{Z}_{p}$, or at the p-torsion of $H_{R}^{k}(S, \mathbb{Z})$, where $p \mid \# \operatorname{Inn}(S)$.
It works, and yields interesting invariants!

Problem: Full rack/quandle (co)homology of a rack is hard to compute.
The only full computations I know of are:
\checkmark 1) trivial quandles;
\checkmark 2) free racks and quandles;
\checkmark 3) Alexander quandles of prime order (Nosaka '13).
So, new tools are necessary.
Theorem (Szymik '19): Quandle cohomology is a Quillen cohomology.
Applications:
\checkmark excision isomorphisms;
\checkmark Mayer-Vietoris exact sequences.

A permutation ϕ on a set $S \sim \operatorname{permutation} \operatorname{rack}\left(S, a \triangleleft_{\phi} b=\phi(a)\right)$.
Theorem (L.-Szymik '20): $\mathrm{H}_{\mathrm{k}}^{\mathrm{R}}\left(\left(\mathrm{S}, \triangleleft_{\phi}\right), \mathrm{X}\right) \cong \mathrm{X}^{\beta_{\mathrm{k}}} \quad$ where

$$
\begin{aligned}
& \checkmark \beta_{0}=1, \beta_{1}=r, \beta_{n+2}=(r-1) \beta_{n+1}+r_{f} \beta_{n}, \quad n \geqslant 0 ; \\
& \checkmark r=\#\{\text { orbits of } \phi\}, \quad r_{f}=\#\{\text { finite orbits of } \phi\} .
\end{aligned}
$$

Remark: $\mathrm{H}_{\bullet}^{\mathrm{R}}\left(\mathrm{S}, \triangleleft_{\phi}\right)$ contains more information than $\mathrm{As}\left(\mathrm{S}, \triangleleft_{\phi}\right)$.
Sketch of proof:
Step 1 Explicit computations for free permutation racks
(= all orbits are infinite).

Trick: $\mathrm{H}_{\mathrm{k}}^{\mathrm{R}}=\operatorname{Ker} \mathrm{d}_{\mathrm{k}}^{\mathrm{R}} / \operatorname{Im} \mathrm{d}_{\mathrm{k}+1}^{\mathrm{R}}$
study chains up to boundaries, then restrict to cycles (usually: determine cycles, then mod out the boundaries).

Step 2 Choose a simplicial resolution by free permutations $F_{\bullet} \rightarrow S$ \leadsto a double complex $E_{p, q}^{0}=C_{q}^{R}\left(F_{p}\right)$
\sim two spectral sequences with the same target.
Step 3 Computations in the spectral sequences:
1st $S S: E_{p, q}^{\infty} \cong \begin{cases}H_{q}^{R}(S) & \text { if } p=0, \\ 0 & \text { if } p \neq 0 .\end{cases}$
2nd SS: $\mathrm{E}_{\bullet, \mathrm{q}}^{2} \cong \bar{H}_{\bullet}(\mathrm{S} / / \phi)^{\otimes(q-1)} \otimes \mathrm{H}_{\bullet}(\mathrm{S} / / \phi)$,
where $S / / \phi$ is the homotopy orbit space:

$S / / \phi=r_{f}$ circles $\bigsqcup r-r_{f}$ lines
Step 4 For the 2nd $S S$, show that $E^{\infty}=E^{2}$.
For this, find enough independent elements in $\mathrm{H}_{\mathrm{q}}^{\mathrm{R}}(\mathrm{S})$.

