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(a � b) � c =

(a � c) � (b � c)

a � b = φ(a)

a φ(a)φ−1(a)



1 How topologists discovered self-distributivity

D. Joyce & S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation �.

(S,�)-colourings for

knot diagrams:

ab

c
y x � y

x y

a � b = c, b � c = a, c � a = b

cf. Wirtinger

presentation

of π1(R
3 \ K):

x � y = y−1xy



(S,�)-colourings for

knot diagrams:

ab

c
y x � y

x y

a � b = c, b � c = a, c � a = b

a

b

c

c

b � c

(a � b) � c
RIII
∼

a

b

c

c

b � c

(a � c) � (b � c)

RIII (a � b) � c = (a � c) � (b � c) shelf

RII ∀b, a 7→ a � b is bijective rack

RI a � a = a quandle



Proposition: (S,�) is a quandle =⇒
# { (S,�)-colourings of diagrams } is a knot invariant.

Example: (Z3, a � b = 2b− a)

3 colourings 9 colourings

Theorem (Joyce & Matveev ’82):

These invariants have a good reason to be strong.



2 An example of a quandle

Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin, and

Gavin Wraith, a bored US school boy in the ’50s:

P Q P � Q

1 1

P Q P � Q

P � RQ � R

R

(P � Q) � R =

(P � R) � (Q � R)

More generally: geometric symmetries.

Another example you might like: Coxeter racks

(V \ {0} , a � b = a − 2
〈a,b〉
〈b,b〉b),

where V is a vector spaces endowed with a nice form.



3 Braids and self-distributivity

One can play the same game with braids, and obtain actions of the braid

groups Bn out of rack colourings.

S a � b (S,�) in braid theory it yields

Z[t±1]Mod ta+ (1− t)b Al. quandle Burau: Bn → GLn(Z[t
±])

group b−1ab conj. quandle Artin: Bn →֒ Aut(Fn)

twisted Alexander quandle Lawrence–Krammer–Bigelow

Z a + 1 rack lg(w), lki,j
free shelf Dehornoy: order on Bn



4 The homology comes in

a

b

c

c

b � c

(a � b) � c
RIII
∼

a

b

c

c

b � c

(a � c) � (b � c)

diagrams: D
R-move
 D ′

colorings: C  C ′

coloring sets: ColS,�(D)
1:1
←→ ColS,�(D

′)

Counting invariants: # ColS,�(D) = #ColS,�(D
′).

�estion: Extract more information?

ω(C) = ω(C ′)

⇓
{
ω(C)

∣∣ C ∈ ColS,�(D)
}
=

{
ω(C ′)

∣∣C ′ ∈ ColS,�(D
′)
}
.



Answer (Carter–Jelsovsky–Kamada–Langford–Saito ’03): State-sums over

crossings, and Boltzmann weights:

φ : S× S→ Zm ; ωφ(C) =
∑

b

a

±φ(a, b)

Conditions on φ:

a

b

c c

b

a � b c

b

φ(a, b)+φ(a � b, c)+
✘
✘
✘✘φ(b, c) =

RIII
∼

a

b

c

a

c a � c

b � c

✘
✘
✘✘φ(b, c)+φ(a, c)+φ(a � c, b � c)

a

a
a

φ(a, a) =

RI
∼

a

a

0

�andle cocycle invariants:
{
ωφ(C)

∣∣C ∈ ColS,�(D)
}
.



φ : S× S→ Zm ; ωφ(C) =
∑

b

a

±φ(a, b)

�andle cocycle invariants:
{
ωφ(C)

∣∣C ∈ ColS,�(D)
}
.

Example: φ = 0 ; counting invariants.

�andle cocycle invariants ! counting invariants.

Generalisation: Kn →֒ Rn+2 and φ : S×(n+1) → Zm.

Wish:

dn+1φ = 0 =⇒ φ refines counting invariants for n-knots,

φ = dnψ =⇒ the refinement is trivial.



5 The desired cohomology theory

Fenn et al. ’95 & Carter et al. ’03 & Graña ’00:

Shelf (S,�) & abelian group X ; cochain complex

Ck
R (S,X) = Map(S×k, X),

(dkR f)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i−1(f(a1, . . . , âi, . . . , ak+1)

− f(a1� ai, . . . , ai−1� ai, ai+1, . . . , ak+1))

; Rack cohomology Hk
R (S,X) = KerdkR / Imd

k−1
R .

�andle (S,�) & abelian group X ; sub-complex of (Ck
R , d

k
R ):

Ck
Q (S,X) = { f : S×k → X | f(. . . , a, a, . . .) = 0 }

; �andle cohomology Hk
Q (S,X).



This is what we were looking for! This construction yields:

✓ Boltzmann weights for constructing higher knot invariants

(powerful and easy to compute);

✓ a parametrisation of abelian rack extensions;

✓ an important class of braided vector spaces giving nice Hopf algebras.



6 How Hopf algebraists discovered SD

Very open question: Classify f.-d. pointed Hopf algebras over C.

Applications:

✓ cohomology of H-spaces, e.g. Lie groups (Hopf ’41);

✓ invariants of knots and 3-manifolds, TQFT;

✓ non-commutative geometry;

✓ condensed-ma�er physics, string theory,

............

Examples:

✓ group algebras kG;

✓ enveloping algebras of Lie algebras U(g);

✓ quantum groups: deformations Uq(g) for semisimple g,

............



Classification program (Andruskiewitsch–Graña–Schneider ’98):

nice Hopf algebra A

;

Ye�er–Drinfel ′d module V ∈ H
HYD;

braided vector space (V, σ) ;rack (S,�) & φ : S× S→ Zm

;

Nichols algebra B(V)

;

& V ∈ H
HYD

bosonization Hopf algebra B(V)#H

✓ G(A) = the group of group-like elements of A, H(A) = CG(A);

✓ R(A) = coinvariants of gr(A)։ gr(A)0 = H(A), V(A) = Prim(R(A));

✓ σ ∈ Aut(V ⊗ V), σ1σ2σ1 = σ2σ1σ2,

where σ1 = σ× IdS, σ2 = IdS×σ;
✓ in red: “arrows with a large image”;

✓ gr(A) ∼= R(A)#H(A) = [conjecturally] = B(V(A))#H(A).



braided vector space (CS, σ�,φ) ;rack (S,�) & φ : S× S→ Zm

σ�,φ : (a, b) 7→ qφ(a,b)(b, a � b)

Here q is anmth root of unity, or transcendental.

Wish:

d2φ = 0 =⇒ (CS, σ�,φ) is a braided vector space,

φ− φ ′ = d1ψ =⇒ the braided vector spaces are isomorphic.



7 Topological realization

Fenn–Rourke–Sanderson ’95:

Shelf (S,�) ; classifying space B(S):

✓ H•
R (S,X)

∼= H•(B(S), X);

✓ an explicit CW-complex, easy to define, hard to compute;

the only computations I am aware of are Fenn–Rourke–Sanderson ’07:

1) trivial quandle Tn = ({1, . . . , n} , a � b = a): B(Tn) ∼= Ω(∨n S2);

2) free rack on n generators FRn: B(FRn) ∼= ∨n S1;

✓ used to extract structural information on H•
R (S,X), e.g. the cup

product (even be�er: a Zinbiel product);

✓ π1(B(S)) ∼= As(S),

where As(S) := 〈S |ab = b (a � b)〉 is the associated group of (S,�).



8 Interpretations of rack cohomology

✓ classifying space;

✓ quantum shuffles;

✓ pre-cubical cohomology;

✓ shelf ; explicit d.g. bialgebra ; cohomology;

✓ operads.

(Serre ’51, Baues ’98, Clauwens ’11, Covez ’12, L. ’13, L. ’17,

Covez–Farinati–L.–Manchon ’19.)



9 Rack cohomology vs group cohomology

The associated group of (S,�):

As(S) := 〈S |ab = b (a � b)〉

Theorem (Joyce ’82): One has a pair of adjoint functors

As : Rack⇄ Group : Conj .

Theorem (García Iglesias & Vendramin ’16): For a finite indecomposable

quandle S,

H2
R (S,X)

∼= X× Hom(N(S), X).

Here N(S) is a finite group (the stabilizer of an a0 ∈ S in [As(S),As(S)]).

Theorem (Fenn–Rourke–Sanderson ’95): There is a graded algebra

morphism HH•(As(S), X)→ H•
R (S,X).



10 Be�i numbers

Theorem (Etingof–Graña ’03): If (S,�) is a rack and # Inn(S) ∈ X∗, then

Hk
R (S,X)

∼= Xrk

✓ Orb(S) = { orbits of S w.r.t. a ∼ a � b}, r = #Orb(S);

✓ Inn(S) is the subgroup of Aut(S) generated by tb : a 7→ a � b.

Bad news: If # Inn(S) ∈ X∗, then

quandle cocycle invariants = coloring invariants + linking numbers.

Hope: Look at X = Zp, or at the p-torsion of Hk
R (S,Z), where p | # Inn(S).

It works, and yields interesting invariants!



11 Homotopical tools: framework

Problem: Full rack/quandle (co)homology of a rack is hard to compute.

The only full computations I know of are:

✓ 1) trivial quandles;

✓ 2) free racks and quandles;

✓ 3) Alexander quandles of prime order (Nosaka ’13).

So, new tools are necessary.

Theorem (Szymik ’19): �andle cohomology is a �illen cohomology.

Applications:

✓ excision isomorphisms;

✓ Mayer–Vietoris exact sequences.



12 Homotopical tools: example

A permutation φ on a set S ; permutation rack (S , a �φ b = φ(a)).

Theorem (L.–Szymik ’20): HR
k((S,�φ), X) ∼= Xβk where

✓ β0 = 1, β1 = r, βn+2 = (r − 1)βn+1 + rfβn, n > 0;

✓ r = # { orbits of φ }, rf = # { finite orbits of φ }.

Remark: HR
•(S,�φ) contains more information than As(S,�φ).

Sketch of proof:

Step 1 Explicit computations for free permutation racks

(= all orbits are infinite).

Trick: HR
k = KerdR

k/Imd
R
k+1

study chains up to boundaries, then restrict to cycles

(usually: determine cycles, then mod out the boundaries).



Step 2 Choose a simplicial resolution by free permutations F• → S

; a double complex E0p,q = CR
q(Fp)

; two spectral sequences with the same target.

Step 3 Computations in the spectral sequences:

1st SS: E∞p,q
∼=

{
HR

q(S) if p = 0,

0 if p 6= 0.
.

2nd SS: E2•,q
∼= H•(S//φ)

⊗(q−1) ⊗H•(S//φ),

where S//φ is the homotopy orbit space:

a φ(a)φ−1(a)

S//φ = rf circles
⊔
r− rf lines

Step 4 For the 2nd SS, show that E∞ = E2.

For this, find enough independent elements in HR
q(S).
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