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A How topologists discovered self-distributivity

D. Joyce & S. Matveev, knot colorists separated by the Iron Curtain:

Take a set S endowed with a binary operation <.
c
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Proposition: (S, <) is a quandle —
#{ (S, <1)-colourings of diagrams } is a knot invariant.

Example: (Z3, a <b =2b —a) Y Y
/ /
Q 3 colourings @3 9 colourings

Theorem (Joyce & Matveev 82):
These invariants have a good reason to be strong.



L2/ An example of a quandle

Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin, and
Gavin Wraith, a bored US school boy in the ’50s:

p Q P<1Q

(P<Q)<R=

(PaR) < (Q«Rr) Q<R PaR

More generally: geometric symmetries.

Another example you might like: Coxeter racks
(VA{0}, a b =a—24b),

where V is a vector spaces endowed with a nice form.




>3 Braids and self-distributivity

One can play the same game with braids, and obtain actions of the braid
groups By, out of rack colourings.

S a<db (S, <) in braid theory it yields
zpsMod | ta+ (1 —t)b | Al quandle Burau: B,, — GLn (Z[tT])
group b Tab conj. quandle Artin: By, — Aut(Fy,)
twisted Alexander quandle Lawrence-Krammer—Bigelow
Z ‘ a+1 ‘ rack lg(w), lki
free shelf Dehornoy: order on By,




K&/ The homology comes in

— (a<b)<c c Ala<dc)<(b<c)
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diagrams: D "~ D’
colorings: e~
coloring sets: Cols 4(D) JLLLN Cols,4(D’)

Counting invariants: # Cols 4(D) = # Cols 4(D’).

Question: Extract more information?

w(C) =w(C)

\
{w(e)| € e Cols 4(D)} = { w(€)| € € Cols,4(D) }.



Answer (Carter—Jelsovsky—Kamada-Langford—Saito ’03): State-sums over
crossings, and Boltzmann weights:
$:SxS = Zm ~ wy(€) =) +d(a,b)
X
Conditions on ¢:
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Quandle cocycle invariants: {w(b(@) ! € € Cols,4(D) }



$:SxS=Zm  ~  we(C) =) +d(a,b)
X

@
Quandle cocycle invariants: {wd)((‘f) | € € Cols,4(D) }
Example: ¢ =0 ~ counting invariants.
Quandle cocycle invariants 2 counting invariants.
Generalisation: K" < R"2 and ¢: S*X(+1) 7.
Wish:

d"*t1d =0 = ¢ refines counting invariants for n-knots,
¢ =d™p = the refinement is trivial.



<X The desired cohomology theory

Fenn et al. ’95 & Carter et al. 03 & Graria ’00:

Shelf (S, <1) & abelian group X ~» cochain complex

Cr(S,X) = Map(S™¥, X),

k+1
k i—1 -~
(dRﬂ(ala---)akJr]) = Z(_”l (f(ah-“)aia---)akJr])
i=1
—flar< ai, ..., ai—1< A4, Qi 1yen .y Qkg1))

~» Rack cohomology HX(S, X) = Ker d¥/ Im d¥—1.
Quandle (S, <1) & abelian group X ~+ sub-complex of (CK, d¥):
CE(S,X) ={f: S** = X|f(...,q,q,...) =0}

~> Quandle cohomology HX(S, X).



This is what we were looking for! This construction yields:

v Boltzmann weights for constructing higher knot invariants
(powerful and easy to compute);

v a parametrisation of abelian rack extensions;

v  an important class of braided vector spaces giving nice Hopf algebras.



&/ How Hopf algebraists discovered SD

Very open question: Classify f.-d. pointed Hopf algebras over C.

Applications:
v cohomology of H-spaces, e.g. Lie groups (Hopf ’41);
v invariants of knots and 3-manifolds, TQFT;
v/ non-commutative geometry;
v  condensed-matter physics, string theory,

Examples:
v group algebras kG;
v enveloping algebras of Lie algebras U(g);
v/ quantum groups: deformations Ug(g) for semisimple g,



Classification program (Andruskiewitsch—Grafia—Schneider *98):

nice Hopf algebra A
¢

Yetter—Drinfel’d module V € ﬂYD

braided vector space (V, o) «~ rack (S, <) & $: S XS = Zm
¢
Nichols algebra B(V)
0 &V e YD

bosonization Hopf algebra B(V)#H

v G(A) = the group of group-like elements of A, H(A) = CG(A);
v R(A) = coinvariants of gr(A) — gr(A)o = H(A), V(A) =Prim(R(A));
vV 0 €Aut(V® V), 010201 = 0207102,
where 01 =0X |dg, 0p = lds X0,
v in red: “arrows with a large image”;
v gr(A) = R(A)#H(A) = [conjecturally] = B(V(A))#H(A).



braided vector space (CS,04,¢4) <«~ rack(S,<)& ¢p:S xS = Zn

0q,¢: (a,b) — q‘b(a’b)(b, a<b)

Here q is an mth root of unity, or transcendental.

Wish:
d’¢p =0 = (CS, 04,¢) is a braided vector space,
¢ — ¢’ =d"p = the braided vector spaces are isomorphic.



<A Topological realization

Fenn—-Rourke-Sanderson *95:

Shelf (S, <) ~ classifying space B(S):
v H (S, X) = H*(B(S), X);
v an explicit CW-complex, easy to define, hard to compute;
the only computations | am aware of are Fenn—Rourke-Sanderson’07:
1) trivial quandle T, = ({1,...,n}, a<<b=a): B(T,) = Q(V, S?);
2) free rack on . generators FR,,:  B(FR,) =V, S;

v  used to extract structural information on H$ (S, X), e.g. the cup
product (even better: a Zinbiel product);

v i (B(S)) = As(S),
where As(S) := (S|ab = b (a < b)) is the associated group of (S, <).



8 Interpretations of rack cohomology

v classifying space;
v quantum shuffles;
v’ pre-cubical cohomology;

v shelf ~ explicit d.g. bialgebra ~ cohomology;
v eperads.

(Serre ’51, Baues *98, Clauwens 11, Covez 12, L. ’13, L. ’17,
Covez—Farinati-L.—Manchon ’19.)



<3/ Rack cohomology vs group cohomology

The associated group of (S, <1):
As(S):=(S|ab = b(a < b))

Theorem (Joyce ’82): One has a pair of adjoint functors
As : Rack & Group : Conj.

Theorem (Garcia Iglesias & Vendramin’16): For a finite indecomposable
quandle S,
HZ(S,X) = X x Hom(N(S), X).

Here N(S) is a finite group (the stabilizer of an ag € S in [As(S), As(S)]).

Theorem (Fenn—-Rourke-Sanderson’95): There is a graded algebra
morphism HH®(As(S), X) — HZ (S, X).



/\W\V\Betti numbers

Theorem (Etingof-Graria’03): If (S, <1) is a rack and #Inn(S) € X*, then

HE(S, X) = X

v Orb(S) ={ orbits of Sw.r.t. a ~ a < b}, r = #O0rb(S);
v Inn(S) is the subgroup of Aut(S) generated by ty: a — a < b.

Bad news: If #Inn(S) € X*, then
quandle cocycle invariants = coloring invariants + linking numbers.

Hope: Look at X = Z,, or at the p-torsion of HX(S,Z), where p |#1nn(S).

It works, and yields interesting invariants!



/\W\V\Homotopical tools: framework

Problem: Full rack/quandle (co)homology of a rack is hard to compute.
The only full computations | know of are:

v 1) trivial quandles;

v 2) free racks and quandles;

v 3) Alexander quandles of prime order (Nosaka ’13).

So, new tools are necessary.
Theorem (Szymik *19): Quandle cohomology is a Quillen cohomology.

Applications:
v excision isomorphisms;

v/ Mayer-Vietoris exact sequences.



><i2{ Homotopical tools: example

A permutation ¢ on aset S ~ permutation rack (S, a <y b = ¢d(a)).

Theorem (L.-Szymik *20): | H} ((S, <1¢,),X) = XPx | where

‘/BO:]> [31:T> Bn+2:(r_])ﬁn+l+rf[5n> n =0
v v =#{orbitsof ¢ }, T¢ = #{ finite orbits of ¢ }.

Remark: H(S, <) contains more information than As(S, <1y, ).

Sketch of proof:

Step 1 Explicit computations for free permutation racks
(= all orbits are infinite).

Trick: H = Kerdy /Imdy
study chains up to boundaries, then restrict to cycles
(usually: determine cycles, then mod out the boundaries).



Step 2 Choose a simplicial resolution by free permutations F — S

O
~> a double complex E}, , = C{ (Fp)
~ two spectral sequences with the same target.

Step 3 Computations in the spectral sequences:
H{(S) ifp=0
tstssEe, =4 als) TP =0,
’ 0 if p #0.

2nd $S: EZ , = Ho(S/d)®97 1) @ Ho(S/ ),
where S/ is the homotopy orbit space:

S/ b =r¢circles | | r — 7y lines

Step 4 For the 2nd SS, show that E* = E2.
For this, find enough independent elements in HE (S).
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