A brief overview

The Yang-Baxter and pentagon equations are two basic equations of Mathematical Physic that lie in the class of polygon equations [4]. Given a set S, a map $s : S \times S \to S \times S$ is said to be a set theoretical solution of the quantum Yang-Baxter equation, or shortly **QYBE** solution, if

 $s_{23}\,s_{13}\,s_{12}=s_{12}\,s_{13}\,s_{23},$

with $s_{12} = s \times id_S$, $s_{23} = id_S \times s$, and $s_{13} = (id_S \times \tau) s_{12} (id_S \times \tau)$ where τ is the flip map. Instead, s is called a set-theoretical solution of the pentagon equation, or shortly PE solution, if

 $s_{23} s_{13} s_{12} = s_{12} s_{23}.$

Determining all QYBE solutions is an open question posed by Drinfel'd [5] around the 90s.

In [2], we focus on maps satisfying both the equations, which we call solutions of the quantum Yang-Baxter equation of pentagonal type, or briefly, P-QYBE solutions. In particular, we give a description of such maps and study their behaviour. Contrary to what happens in general, we prove that among these maps there are some whose powers are solutions.

Basics on the pentagon equation

According to the notation introduced in [1], given a set S and a map s from $S \times S$ into itself, we write

$$s(a,b) = (ab, \theta_a(b)),$$

where θ_a is a map from S into itself, for every $a \in S$.

Proposition 1 The map $s(a, b) = (ab, \theta_a(b))$ is a PE solution on S if and only if the following conditions hold

> (ab)c = a(bc) $\theta_a(b)\theta_{ab}(c) = \theta_a(bc)$ $\theta_{\theta_a(b)}\theta_{ab} = \theta_b$

for all $a, b, c \in S$.

Clearly, the condition (1) leads to consider semigroups. For in-

stance, if S is a semigroup and $f \in End(S)$, with $f^2 = f$, then the map s(a,b) = (ab, f(b)) is a PE solution on S. In particular, if S is a group, the only invertible PE solution s on S is given by s(a,b) = (ab,1) (see [6]).

A complete description of not necessarily bijective PE solutions on groups can be found in [1]. Later, a description of all involutive PE solutions has given in [3].

YBE SOLUTIONS OF PENTAGONAL TYPE

Paola Stefanelli – Università del Salento Algebra Days in Caen 2022: from Yang–Baxter to Garside, March 24 – 25 2022

- (1)
- (2)
- (3)

P-QYBE solutions

Definition Let S be a set and $s(a, b) = (ab, \theta_a(b))$ a PE s on S. The map s is said to be a P-QYBE solution if it is QYBE solution.

Proposition 2 Let S be a semigroup and s(a, b) = (ab, b)PE solution on S. Then, the map s is a QYBE solution if an

> $abc = a\theta_b(c)bc$ $\theta_a \theta_b = \theta_b$ $\theta_a(bc) = \theta_{\theta_b(c)}(bc)$

are satisfied, for all $a, b, c \in S$.

Proposition 3 Let $s(a,b) = (ab, \theta_a(b))$ be a P-QYBE tion on a semigroup S. Then, the following conditions hole 1. the map θ_a is idempotent, for every $a \in S$;

2. $\theta_{a|_{S^2}} = \theta_{b|_{S^2}}$, for all $a, b \in S$;

3. if $S^2 = S$, then s(a, b) = (ab, f(b)), where f is an idem endomorphism of S.

Examples

- 1. The map s(a, b) = (ab, e), with e a left identity (or a right tity) for a semigroup S. In particular, if S is a group, the **P-QYBE solution is** s(a, b) = (ab, 1).
- 2. The map s(a,b) = (ab,b), with S is a left quasi-norma group, i.e., abc = acbc, for all $a, b, c \in S$.
- 3. The map $s(a, b) = (ab, b^{-1}b)$, with S a Clifford semigrou
- Now, we focus on semigroups S that belong to the varie $\mathcal{S} := [abc = adbc]$

which immediately ensures (Y1) (see [7]). In this way, on to find maps θ_a from S into itself satisfying just (Y2) and

Proposition 4

Let $S \in \mathcal{S}$ such that $S^2 = S$. Then, the unique P-QYBE sc on S are s(a,b) = (ab, f(b)), with f an idempotent end phism of S.

Examples

1. If $S \in \mathcal{S}$, the map s(a, b) = (ab, bab). 2. The map s(a, b) = (f(a), g(b)), where ab = f(a), for all $a, b \in S$.



	Powers of P-YBE solutions
solution is also a	We recall that a map s is a QYBE solution if and only $r := \tau s \tau$ is a solution of the braid equation, i.e., it holds
	$r_{12} r_{23} r_{12} = r_{23} r_{12} r_{23}.$
$, heta_{a}(b))$ a and only	In this case, we say that r is a YBE solution. Note that if r is a YBE solution, its n -th power r^n is not n YBE solution.
(Y1) (Y2)	If s is a P-QYBE solution, we say that the corresponding m is a P-YBE solution.
(Y3)	Theorem 1 Let $S \in S$ and $r(a, b) = (\theta_a(b), ab)$ a P-YBE S . Then, it holds $r^5 = r^3$ and the powers r^2, r^3, r^4 of the still YBE solutions. In addition, if S is idempotent, it holds
3E solu- old:	There exist P-YBE solutions r for which $r^5 = r^3$, but of r are not solutions. The P-YBE solution $r(a, b) = (b_3)$ on a left quasi-normal semigroup S is such an example.
mpotent	Example The P-YBE solution $r(a, b) = (bab, ab)$ on $S \in r^4 = r^2$ and the powers
	$egin{array}{l} r^2\left(a,b ight)=\left(aab, ight)\ r^3\left(a,b ight)=\left(bab,aab ight) \end{array}$
ght iden- e unique	are YBE solutions.
al semi-	References
oup.	 F. Catino, M. Mazzotta, and M. M. Miccoli. Set-theoretical solution tagon equation on groups. <i>Comm. Algebra</i>, 48(1):83–92, 2020. F. Catino, M. Mazzotta, and P. Stefanelli. Set-theoretical solution Yang–Baxter and pentagon equations on semigroups. <i>Semi</i> 100(3):1–26, 2020.
ety	
ne has	[3] Ilaria Colazzo, Eric Jespers, and Ł ukasz Kubat. Set-theoretic s pentagon equation. <i>Comm. Math. Phys.</i> , 380(2):1003–1024, 202
d (Y3).	[4] A. Dimakis and F. Müller-Hoissen. Simplex and Polygon Equa Symmetry Integrability Geom. Methods Appl., 11:Paper 042, 49,
solutions ndomor-	[5] V. G. Drinfel ⁷ d. On some unsolved problems in quantum group th tum groups (Leningrad, 1990), volume 1510 of Lecture Notes in 1–8. Springer, Berlin, 1992.
	[6] R. M. Kashaev and S. M. Sergeev. On pentagon, Ten-Term, an Relations. <i>Comm. Math. Phys.</i> , 195(2):309–319, 1998.
	[7] R. A. R. Monzo. Pre-compatible almost endomorphisms and sem

cube is a band. *Semigroup Forum*, 67(3):355–372, Sep 2003.

Contact Information

paola.stefanelli@unisalento.it

ly if the map

necessarily a

 $\operatorname{map} r := \tau s \tau$

E solution on he map r are ds $r^4=r^2$.

it the powers (b, ab) defined

 $\in \mathcal{S}$ satisfies

tions of the pensolutions of the migroup Forum, solutions of the)20. Jations. SIGMA 9, 2015. theory. In Quanin Math., pages

and Tetrahedron

migroups whose