The word problem for certain Hecke-Kiselman monoids

Victoria LEBED, University of Caen Normandy (France)

(Virtual version of) Uppsala, December 2021

1 Summary

Linear Hecke-Kiselman monoids L_n (of type A_n):

- generators x_i , $1 \le i \le n$;
- relations

$$\begin{aligned} x_i^2 &= x_i, & 1 \leqslant i \leqslant n, \\ x_i x_j &= x_j x_i, & 1 < i - j < n, \\ x_i x_{i+1} x_i &= x_{i+1} x_i x_{i+1} = x_i x_{i+1}, & 1 \leqslant i < n. \\ & \underbrace{\bullet \longrightarrow \bullet \longrightarrow \bullet}_{1} \quad \cdots \quad \longrightarrow \bullet \\ 1 & 2 & 3 & n \end{aligned}$$

We will see that:

- 1) they are interesting;
- (2) one knows a lot about them.

2nd talk: the same for circular Hecke-Kiselman monoids C_n (of type \widetilde{A}_n).

$\langle 2 \rangle$

Positive braid monoids B_{n+1}^+ :

• generators x_i , $1 \leqslant i \leqslant n$

$$x_i \leftrightarrow | | \stackrel{\text{ii+1 } n+1}{\searrow} | \frac{1}{}$$

relations

$$x_i x_j = x_j x_i,$$

 $x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1},$

$$1 < i - j < n,$$

$$1 \le i < n.$$

$$x_1x_2x_1 = x_2x_1x_2 \leftrightarrow$$
 (Reidemeister III move)

Positive braid monoids B_{n+1}^+ :

- generators x_i , $1 \le i \le n$
- relations

$$x_i x_j = x_j x_i,$$
 $1 < i - j < n,$ $x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1},$ $1 \le i < n.$

Finite quotients?

- (A) $x_i^2 = 1$: symmetric group S_{n+1} ;
- (B) $x_i^2 = x_i$: 0-Hecke monoids;
- \bigcirc $x_i^2 = 0$ (with an additional generator 0): nil-Hecke monoids;
- (D) monoid algebra + general quadratic relation: Hecke algebra.

Why finite? Bigon killing!

Linear Hecke-Kiselman monoids L_n (*Ganyushkin-Mazorchuk '02*):

- generators x_i , $1 \le i \le n$
- relations

$$\begin{split} x_i^2 &= x_i, & 1 \leqslant i \leqslant n, \\ x_i x_j &= x_j x_i, & 1 < i - j < n, \\ x_i x_{i+1} x_i &= x_{i+1} x_i x_{i+1} = x_i x_{i+1}, & 1 \leqslant i < n. \end{split}$$

Positive braid monoids $B_{n+1}^+ \sim 0$ -Hecke monoids + Kiselman monoids. (convexity theory)

Also appear in:

• computer simulations (discrete sequential dynamical system,

representations of path algebras of quivers (projection functors,
 Grensing-Mazorchuk, '12-'17).

$$x_i \leftrightarrow | | \stackrel{i i+1}{\searrow} | |$$

Definition: L_n -chain on A = idempotent maps $\sigma_i : A^2 \to A^2$ satisfying

$$\begin{split} (\sigma_i \times \mathsf{Id})(\mathsf{Id} \times \sigma_{i+1})(\sigma_i \times \mathsf{Id}) &= (\mathsf{Id} \times \sigma_{i+1})(\sigma_i \times \mathsf{Id})(\mathsf{Id} \times \sigma_{i+1}) \\ &= (\sigma_i \times \mathsf{Id})(\mathsf{Id} \times \sigma_{i+1}) \qquad \text{on } A^3. \end{split}$$

Proposition: L_n acts on
$$A^{n+1}$$
 by $x_i \mapsto Id^{i-1} \times \sigma_i \times Id^{n-i}$.

Remark: All $\sigma_i = \sigma \rightarrow idempotent Kiselman Yang-Baxter operator.$

Examples:

- $\sigma_i(a, b) = (a, p_i(b))$, with $p_i^2 = p_i$.
- \bullet $\sigma_i(a,b) = (a,f_i(a)).$

Examples:

- $\sigma_i(a, b) = (a, p_i(b))$, with $p_i^2 = p_i$.
- $\sigma_i(a,b) = (a,f_i(a)).$

Particular case: $\sigma_i(a, b) = (a, a)$ recovers

 $L_n \stackrel{1:1}{\leftrightarrow} Cat_{n+1}$ (Catalan monoid)

Examples:

- $\sigma_i(a, b) = (a, p_i(b))$, with $p_i^2 = p_i$.
- $\sigma_i(a,b) = (a,f_i(a)).$
- $\sigma_i(a,b) = (1,f_i(a)b)$, with A a monoid, and f_i monoid homomorphisms.
- $\sigma_i(a,b) = (a, a * b)$, with * associative and absorbing:

$$a*(a*b) = a*b.$$

4 Understanding a monoid

- 1 size;
- 2 word problem;
- 3 normal form.

- \bigcirc the elements of L_n ;
- (B) n-webs (weakly entangled braids): bigons-less and triangle-less positive braids on n+1 strands;

Proof idea for $(A) \rightarrow (B)$:

$$x_i^2 = x_i$$

 $x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1} = x_i x_{i+1}$

bigon killing triangle killing

Subtlety: different killing schemes.

Corollary: rewriting procedure.

- (A) the elements of L_n ;
- (B) bigons-less and triangle-less positive braids on n + 1 strands;
- (C) increasing couples of increasing integer sequences between 1 and n+1:

- (B) bigons-less and triangle-less positive braids on n + 1 strands;
- \bigcirc increasing couples of increasing integer sequences between 1 and n+1:

Proof idea for $(B) \rightarrow (C)$: follow the right strands.

Example:

Proof idea for $(C) \rightarrow (B)$: draw the right strands and complete.

- B bigons-less and triangle-less positive braids on n+1 strands;
- \bigcirc 321-avoiding permutations from S_{n+1} .

Example:

- (A) the elements of L_n ;
- (B) bigons-less and triangle-less positive braids on n+1 strands;
- \bigodot increasing couples of increasing integer sequences between 1 and n+1;
- \bigcirc 321-avoiding permutations from S_{n+1} .

 $\textbf{Proof idea} \text{ for } \textcircled{A} \rightarrow \textcircled{C} \text{: use the } L_n\text{-chain } \sigma_i(a,b) = (a,a).$

Corollaries:

- 1 size: Catalans $C_{n+1} = \frac{1}{n+2} {2n+2 \choose n+1}$ (byproduct: their exotic avatars);
- 2 word problem: a linear solution $(A) \rightarrow (C)$;

9 Big brother

Circular Hecke-Kiselman monoids C_n (of type A_n), $n \ge 3$:

- generators x_i , $1 \le i \le n$;
- relations

$$\begin{split} x_i^2 &= x_i, & 1 \leqslant i \leqslant n, \\ x_i x_j &= x_j x_i, & 1 < i - j < n - 1, \\ x_i x_{i+1} x_i &= x_{i+1} x_i x_{i+1} = x_i x_{i+1}, & 1 \leqslant i < n + 1, \\ \text{where } x_{n+1} \text{ means } x_1. & 1 \leqslant i < n + 1, \end{split}$$

- 1 size: infinite;
- 2 word problem: two versions of the same solution:
 - a finite Gröbner basis (Męcel-Okniński '19);
 - confluent reductions (Aragona–D'Andrea '20);
- 3 a complicated normal form for almost all elements (Okniński-Wiertel '20).

Application: the algebra $K[C_n]$ is Noetherian.

11/ Yang-Baxter-like representations

Definition: C_n -chain on A = idempotent maps $\sigma_i \colon A^2 \to A^2$ satisfying $(\sigma_i \times Id)(Id \times \sigma_{i+1})(\sigma_i \times Id) = (Id \times \sigma_{i+1})(\sigma_i \times Id)(Id \times \sigma_{i+1})$

$$= (\sigma_i \times Id)(Id \times \sigma_{i+1}) \qquad \text{on } A^3$$

for $1 \leqslant i \leqslant n$. As usual, we put $\sigma_{n+1} = \sigma_1$.

Proposition: C_n acts on A^n by

$$x_i \mapsto \mathsf{Id}^{i-1} \times \sigma_i \times \mathsf{Id}^{n-i} \qquad \text{for all } i < n,$$

$$x_n \mapsto \theta^{-1}(\sigma_n \times Id^{n-2})\theta,$$

where $\boldsymbol{\theta}$ is the permutation moving the last component to the beginning.

Examples: The same as for L_n . For instance, $\sigma_i(a,b) = (a,f_i(a))$.

Particular case: $\sigma_i(a,b) = (a,a), \ i < n, \ and \ \sigma_n(a,b) = (a,a+1)$ (Aragona-D'Andrea '13).

- \bigcirc the elements of C_n ;
- B \tilde{n} -webs (weakly entangled braids): positive n-strand braids on a cylinder
 - without contractible bigons and triangles

• and composed from elementary diagrams:

$$d_2 = \prod_{1} \quad X_3 \quad \prod_{4}$$

- \bigcirc the elements of C_n ;
- B $\tilde{\mathfrak{n}}$ -webs (weakly entangled braids): positive \mathfrak{n} -strand braids on a cylinder
 - without contractible bigons and triangles
 - and composed from elementary diagrams:

$$d_2 = \prod_{1} \quad X_{3} \quad \prod_{4}$$

Examples:

Remark: The d_i and t generate the braid monoid/group on the cylinder.

- \bigcirc the elements of C_n ;
- (B) \tilde{n} -webs (weakly entangled braids): positive n-strand braids on a cylinder
 - without contractible bigons and triangles
 - and composed from elementary diagrams.

Proof idea for $(A) \rightarrow (B)$: Kill all contractible bigons and triangles.

Subtlety: different killing schemes.

Corollary: rewriting procedure.

- (B) \tilde{n} -webs on a cylinder;
- (C) n-close increasing couples of increasing integer sequences:

Proof idea for $(B) \rightarrow (C)$: follow the right strands.

Proposition: For an \tilde{n} -diagram, the following are equivalent:

- 1. no contractible bigons, no contractible triangles;
- 2. no minimal contractible bigons, no minimal contractible triangles;
- 3. up to isotopy, each strand is right, left or vertical.

- (B) \tilde{n} -webs (weakly entangled braids) on a cylinder;
- © n-close increasing couples of increasing integer sequences:

Proof idea for $\textcircled{B} \rightarrow \textcircled{C}$: follow the right strands, and encode permutation + winding info:

strand $a \to b$ goes around the cylinder w times a < b + w * n.

(B) \tilde{n} -webs on a cylinder;

(C) n-close increasing couples of increasing integer sequences:

Proof idea for $\textcircled{B} \to \textcircled{C}$: follow the right strands, and encode permutation + winding info:

strand $a \to b$ goes around the cylinder w times a < b + w * n.

Example:

1	2	twists		6	<	0
2	1			O	<	7
_	1		\sim	\/		\/
	个		/	٧		V
				2	<	3
2	3			_		J

- B \tilde{n} -webs on a cylinder;
- (C) n-close increasing couples of increasing integer sequences:

Proof idea for $\textcircled{B} \rightarrow \textcircled{C}$: follow the right strands, and encode permutation + winding info:

strand $a \to b$ goes around the cylinder w times a < b + w * n.

Proof idea for $\bigcirc \rightarrow \bigcirc$:

- 1. decode the permutation + winding info: Euclidean division;
- 2. draw the right strands (on the universal cover of the cylinder);
- 3. complete by the left strands and the vertical strands, use: the right winding nb = the left winding nb.

(A) the elements of C_n ;

(B) \tilde{n} -webs;

(C) n-close increasing couples of increasing integer sequences.

Proof idea for $\textcircled{A} \to \textcircled{C}$: use the C_n -chain $\sigma_i(a,b) = (a,a)$ for i < n, and $\sigma_n(a,b) = (a,a+n)$.

Example: $x_4x_3x_1x_4x_2x_1x_3x_2x_4x_3 \in C_4$.

$$(1,2,3,4) \stackrel{x_3}{\mapsto} (1,2,3,3) \stackrel{x_4}{\mapsto} (7,2,3,3) \stackrel{x_2}{\mapsto} (7,2,2,3) \stackrel{x_3}{\mapsto} (7,2,2,2) \stackrel{x_1}{\mapsto} (7,7,2,2)$$

$$\stackrel{x_2}{\mapsto} (7,7,7,2) \stackrel{x_4}{\mapsto} (6,7,7,2) \stackrel{x_1}{\mapsto} (6,6,7,2) \stackrel{x_3}{\mapsto} (6,6,7,7) \stackrel{x_4}{\mapsto} (11,6,7,7)$$

Modulo 4: (3,2,3,3); right strands: $2 \to 2$ and $3 \to 1$.

Twists: $(1,2,3,4) \mapsto (11,6,7,7);$ 6 = 2 + 1 * 4, 11 = 3 + 2 * 4.

Sequences:
$$6 = 2 + 1 * 4$$
, $9 = 1 + 2 * 4$.

- \bigcirc the elements of C_n ;
- B ñ-webs;
- © n-close increasing couples of increasing integer sequences.

Corollaries:

- 2 word problem: a linear solution $(A) \rightarrow (C)$;
- $\boxed{3}$ a quadratic normal form: $(A) \rightarrow (C) \rightarrow (B) \rightarrow (A)$
 - or $(A) \rightarrow (C) \stackrel{\text{inductive}}{\rightarrow} (A)$.

Problems:

- no diagrammatic interpretation for general graphs;
- for a generically oriented chain, different webs may represent equivalent words.

Example:

$$\begin{array}{c}
\bullet \leftarrow \bullet \longrightarrow \bullet \\
1 & 2 & 3
\end{array}$$

relations:
$$x_1^2 = x_1, x_2^2 = x_2, x_3^2 = x_3, x_1x_3 = x_3x_1, x_1x_2x_1 = x_2x_1x_2 = x_2x_1, x_2x_3x_2 = x_3x_2x_3 = x_2x_3$$

$$x_2x_1x_3x_2 = x_2x_1x_2x_3x_2 = x_2x_1x_2x_3 = x_2x_1x_3$$