The word problem for certain Hecke-Kiselman monoids

Victoria LEBED, University of Caen Normandy (France)
(Virtual version of) Uppsala, December 2021

Linear Hecke-Kiselman monoids L_{n} (of type A_{n}):

- generators $x_{i}, 1 \leqslant i \leqslant n$;
- relations

$$
\begin{aligned}
& x_{i}^{2}=x_{i}, \\
& x_{i} x_{j}=x_{j} x_{i}, \\
& x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1} \text {, } \\
& \stackrel{\bullet}{\bullet} \longrightarrow_{2}^{\bullet} \longrightarrow{ }_{3}^{\bullet} \\
& \begin{aligned}
& 1 \leqslant \mathfrak{i} \leqslant n, \\
& 1<\mathfrak{i}-\mathfrak{j}<n, \\
& 1 \leqslant i<n . \\
\longrightarrow & \bullet
\end{aligned}
\end{aligned}
$$

We will see that:
(1) they are interesting;
(2) one knows a lot about them.

2nd talk: the same for circular Hecke-Kiselman monoids C_{n} (of type \widetilde{A}_{n}).

2 Why these relations?

Positive braid monoids $\mathrm{B}_{\mathrm{n}+1}^{+}$:

- generators $x_{i}, 1 \leqslant i \leqslant n$

$$
x_{i} \leftrightarrow|\underbrace{i i+1}|^{n+1} \uparrow
$$

- relations

$$
\begin{array}{ll}
x_{i} x_{j}=x_{j} x_{i}, & 1<i-j<n \\
x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1}, & 1 \leqslant i<n .
\end{array}
$$

$$
x_{1} x_{2} x_{1}=x_{2} x_{1} x_{2} \leftrightarrow
$$

2 Why these relations?

Positive braid monoids $\mathrm{B}_{\mathrm{n}+1}^{+}$:

- generators $x_{i}, 1 \leqslant i \leqslant n$
- relations

$$
\begin{array}{ll}
x_{i} x_{j}=x_{j} x_{i}, & 1<i-j<n \\
x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1}, & 1 \leqslant i<n
\end{array}
$$

Finite quotients?
(A) $x_{i}^{2}=1$: symmetric group S_{n+1};
(B) $x_{i}^{2}=x_{i}: 0$-Hecke monoids;
(C) $x_{i}^{2}=0$ (with an additional generator 0): nil-Hecke monoids;
(D) monoid algebra + general quadratic relation: Hecke algebra.

Why finite? Bigon killing!

Bigon killing

1) minimal bigon: \sim 2) no internal
2) general
case:
no internal bigons

Why these relations?

Linear Hecke-Kiselman monoids L_{n} (Ganyushkin-Mazorchuk '02):

- generators $x_{i}, 1 \leqslant i \leqslant n$
- relations

$$
\begin{array}{ll}
x_{i}^{2}=x_{i}, & 1 \leqslant i \leqslant n \\
x_{i} x_{j}=x_{j} x_{i}, & 1<i-j<n \\
x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1}, & 1 \leqslant i<n .
\end{array}
$$

Positive braid monoids $\mathrm{B}_{\mathrm{n}+1}^{+} \leadsto 0$-Hecke monoids + Kiselman monoids. (convexity theory)
Also appear in:

- computer simulations (discrete sequential dynamical system, Collina-D'Andrea '15)

- representations of path algebras of quivers (projection functors, Grensing-Mazorchuk, '12-'17).

Yang-Baxter-like representations

$$
x_{i} \leftrightarrow|\underbrace{i i+1}_{\mid}|^{n+1}
$$

Definition: L_{n}-chain on $A=$ idempotent maps $\sigma_{i}: A^{2} \rightarrow A^{2}$ satisfying

$$
\begin{aligned}
\left(\sigma_{i} \times \mathrm{Id}\right)\left(\mathrm{Id} \times \sigma_{i+1}\right)\left(\sigma_{\mathfrak{i}} \times \mathrm{Id}\right) & =\left(\mathrm{Id} \times \sigma_{i+1}\right)\left(\sigma_{i} \times \mathrm{Id}\right)\left(\mathrm{Id} \times \sigma_{i+1}\right) \\
& =\left(\sigma_{i} \times \mathrm{Id}\right)\left(\mathrm{Id} \times \sigma_{i+1}\right) \quad \text { on } A^{3} .
\end{aligned}
$$

Proposition: L_{n} acts on A^{n+1} by

$$
x_{i} \mapsto I d^{i-1} \times \sigma_{i} \times I d^{n-i} .
$$

Remark: All $\sigma_{i}=\sigma \leadsto$ idempotent Kiselman Yang-Baxter operator.

Examples:

- $\sigma_{i}(a, b)=\left(a, p_{i}(b)\right)$, with $p_{i}^{2}=p_{i}$.
- $\sigma_{i}(a, b)=\left(a, f_{i}(a)\right)$.

Yang-Baxter-like representations

Examples:

- $\sigma_{i}(a, b)=\left(a, p_{i}(b)\right)$, with $p_{i}^{2}=p_{i}$.
- $\sigma_{i}(a, b)=\left(a, f_{i}(a)\right)$.

Particular case: $\sigma_{i}(a, b)=(a, a)$ recovers

$$
\mathrm{L}_{\mathrm{n}} \stackrel{1: 1}{\leftrightarrow} \text { Cat }_{\mathrm{n}+1} \text { (Catalan monoid) }
$$

Examples:

- $\sigma_{i}(a, b)=\left(a, p_{i}(b)\right)$, with $p_{i}^{2}=p_{i}$.
- $\sigma_{i}(a, b)=\left(a, f_{i}(a)\right)$.
- $\sigma_{i}(a, b)=\left(1, f_{i}(a) b\right)$, with A a monoid, and f_{i} monoid homomorphisms.
- $\sigma_{i}(a, b)=(a, a * b)$, with $*$ associative and absorbing:

$$
a *(a * b)=a * b
$$

4. Understanding a monoid

1 size;
2 word problem;
3 normal form.

Theorem (folklore): There are explicit bijections between:
(A) the elements of L_{n};
(B) n-webs (weakly entangled braids):
bigons-less and triangle-less positive braids on $\mathfrak{n}+1$ strands;
Proof idea for (A) \rightarrow (B):

$$
\begin{array}{ll}
x_{i}^{2}=x_{i} & \text { bigon killing } \\
x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1} & \text { triangle killing }
\end{array}
$$

Subtlety: different killing schemes.
Corollary: rewriting procedure.

Theorem (folklore): There are explicit bijections between:
(A) the elements of L_{n};
(B) bigons-less and triangle-less positive braids on $n+1$ strands;
(C) increasing couples of increasing integer sequences between 1 and $\mathfrak{n}+1$:

$$
\begin{aligned}
& \mathrm{b}_{1}<\mathrm{b}_{2}<\ldots<\mathrm{b}_{\mathrm{k}} \leqslant \mathrm{n}+1 \\
& V \\
& V \\
& \mathrm{a}_{1}<\mathrm{a}_{2}<\ldots
\end{aligned}
$$

Theorem (folklore): There are explicit bijections between:
(B) bigons-less and triangle-less positive braids on $n+1$ strands;
(C) increasing couples of increasing integer sequences between 1 and $\mathfrak{n}+1$:

$$
1 \leqslant a_{1}<a_{2}<\ldots<a_{k}
$$

Proof idea for (B) \rightarrow (C): follow the right strands.
Example:

Proof idea for (C) \rightarrow (B): draw the right strands and complete.

Theorem (folklore): There are explicit bijections between:
(B) bigons-less and triangle-less positive braids on $n+1$ strands;
(D) 321-avoiding permutations from S_{n+1}.

Example:

Theorem (folklore): There are explicit bijections between:
(A) the elements of L_{n};
(B) bigons-less and triangle-less positive braids on $n+1$ strands;
(C) increasing couples of increasing integer sequences between 1 and $n+1$;
(D) 321-avoiding permutations from S_{n+1}.

Proof idea for (A) \rightarrow (C): use the L_{n}-chain $\sigma_{i}(a, b)=(a, a)$.

Corollaries:

1 size: Catalans $C_{n+1}=\frac{1}{n+2}\binom{2 n+2}{n+1}$ (byproduct: their exotic avatars);
2 word problem: a linear solution (A) \rightarrow (C);
3 a quadratic normal form: (A) \rightarrow (C) \rightarrow (B) \rightarrow (A)

$$
\text { or }(\mathrm{A}) \rightarrow(\mathrm{C}) \rightarrow(\mathrm{D}) \underset{\substack{\text { inductive } \\ \text { process }}}{\text { (A). }} \text {. }
$$

9/ Big brother

Circular Hecke-Kiselman monoids C_{n} (of type \widetilde{A}_{n}), $n \geqslant 3$:

- generators $x_{i}, 1 \leqslant i \leqslant n$;
- relations

$$
\begin{array}{ll}
x_{i}^{2}=x_{i}, & 1 \leqslant i \leqslant n \\
x_{i} x_{j}=x_{j} x_{i}, & 1<i-j<n-1, \\
x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1}, & 1 \leqslant i<n+1,
\end{array}
$$

$$
\text { where } x_{n+1} \text { means } x_{1} \text {. }
$$

What was known for C_{n}

1 size: infinite;
2 word problem: two versions of the same solution:

- a finite Gröbner basis (Męcel-Okniński '19);
- confluent reductions (Aragona-D'Andrea '20);

3 a complicated normal form for almost all elements (Okniński-Wiertel '20). Application: the algebra $K\left[C_{n}\right]$ is Noetherian.

Definition: C_{n}-chain on $A=$ idempotent maps $\sigma_{i}: A^{2} \rightarrow A^{2}$ satisfying

$$
\begin{aligned}
\left(\sigma_{\mathfrak{i}} \times \mathrm{Id}\right)\left(\mathrm{Id} \times \sigma_{i+1}\right)\left(\sigma_{\mathfrak{i}} \times \mathrm{Id}\right) & =\left(\mathrm{Id} \times \sigma_{i+1}\right)\left(\sigma_{\mathfrak{i}} \times \mathrm{Id}\right)\left(\mathrm{Id} \times \sigma_{i+1}\right) \\
& =\left(\sigma_{\mathfrak{i}} \times \mathrm{Id}\right)\left(\mathrm{Id} \times \sigma_{i+1}\right) \quad \text { on } A^{3}
\end{aligned}
$$

for $1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}$. As usual, we put $\sigma_{n+1}=\sigma_{1}$.
Proposition: C_{n} acts on A^{n} by

$$
\begin{aligned}
x_{i} & \mapsto I d^{i-1} \times \sigma_{i} \times I d^{n-i} \quad \text { for all } i<n, \\
x_{n} & \mapsto \theta^{-1}\left(\sigma_{n} \times I d^{n-2}\right) \theta
\end{aligned}
$$

where θ is the permutation moving the last component to the beginning.
Examples: The same as for L_{n}. For instance, $\quad \sigma_{i}(a, b)=\left(a, f_{i}(a)\right)$.
Particular case: $\sigma_{i}(a, b)=(a, a), i<n$, and $\sigma_{n}(a, b)=(a, a+1)$ (Aragona-D'Andrea '13).

12. Webs on a cylinder

Theorem (L. '21): There are explicit bijections between:
(A) the elements of C_{n};
(B) \tilde{n}-webs (weakly entangled braids): positive \mathfrak{n}-strand braids on a cylinder

- without contractible bigons and triangles

contractible

non-contractible
- and composed from elementary diagrams:

$$
\mathrm{d}_{2}=\prod_{1}>_{2}
$$

12. Webs on a cylinder

Theorem (L. '21): There are explicit bijections between:
(A) the elements of C_{n};
(B) \tilde{n}-webs (weakly entangled braids): positive n-strand braids on a cylinder

- without contractible bigons and triangles
- and composed from elementary diagrams:

$$
d_{2}=\prod_{1} \sum_{2} \prod_{4}
$$

Examples:

Remark: The d_{i} and t generate the braid monoid/group on the cylinder.

12/ Webs on a cylinder

Theorem (L. '21): There are explicit bijections between:
(A) the elements of C_{n};
(B) \tilde{n}-webs (weakly entangled braids): positive n-strand braids on a cylinder

- without contractible bigons and triangles
- and composed from elementary diagrams.

Proof idea for (A) \rightarrow (B): Kill all contractible bigons and triangles.
Subtlety: different killing schemes.
Corollary: rewriting procedure.

Theorem (L. '21): There are explicit bijections between:
(B) \tilde{n}-webs on a cylinder;
(C) n-close increasing couples of increasing integer sequences:

$$
1 \leqslant a_{1}<a_{2}<\ldots<a_{k} \leqslant n
$$

Proof idea for (B) \rightarrow (C) follow the right strands.
Proposition: For an $\tilde{\mathfrak{n}}$-diagram, the following are equivalent:

1. no contractible bigons, no contractible triangles;
2. no minimal contractible bigons, no minimal contractible triangles;
3. up to isotopy, each strand is right, left or vertical.

Theorem (L. '21): There are explicit bijections between:
(B) \tilde{n}-webs (weakly entangled braids) on a cylinder;
(C) n-close increasing couples of increasing integer sequences:

Proof idea for (B) \rightarrow (C): follow the right strands, and encode permutation + winding info:
strand $a \rightarrow b$ goes around the cylinder w times $\leadsto a<b+w * n$.
(B) \tilde{n}-webs on a cylinder;
(C) n-close increasing couples of increasing integer sequences:

$$
\begin{aligned}
& \mathrm{b}_{1}<\mathrm{b}_{2}<\ldots<\mathrm{b}_{\mathrm{k}}<\mathrm{b}_{1}+\mathrm{n} \\
& 1 \leqslant a_{1}<a_{2}<\ldots<a_{k} \leqslant n
\end{aligned}
$$

Proof idea for (B) \rightarrow (C): follow the right strands, and encode permutation + winding info:
strand $a \rightarrow b$ goes around the cylinder w times $\leadsto a<b+w * n$.
Example:

12 twists

II-sequences

Theorem (L. '21): There are explicit bijections between:
(B) \tilde{n}-webs on a cylinder;
(C) n-close increasing couples of increasing integer sequences:

$$
\begin{aligned}
& \mathrm{b}_{1}<\mathrm{b}_{2}<\ldots<\mathrm{b}_{\mathrm{k}}<\mathrm{b}_{1}+\mathrm{n} \\
& V \\
& V \\
& \mathrm{a}_{1}<\mathrm{a}_{2}<\ldots
\end{aligned}
$$

Proof idea for (B) \rightarrow (C): follow the right strands, and encode permutation + winding info:
strand $\mathrm{a} \rightarrow \mathrm{b}$ goes around the cylinder w times $\leadsto \mathrm{a}<\mathrm{b}+w * \mathrm{n}$.

$$
\text { Proof idea for }(C) \text { (B): }
$$

1. decode the permutation + winding info: Euclidean division;
2. draw the right strands (on the universal cover of the cylinder);
3. complete by the left strands and the vertical strands, use: \quad the right winding $n b=$ the left winding $n b$.

$$
6<9
$$

Example:

$$
2<3
$$

in C_{4} :
$x_{4} x_{3} x_{1} x_{4} x_{2} x_{1} x_{3} x_{2} x_{4} x_{3}$

Theorem (L. '21): There are explicit bijection between:
(A) the elements of C_{n};
(B) \tilde{n}-webs;
(C) n-close increasing couples of increasing integer sequences.

Proof idea for (A) \rightarrow (C): use the C_{n}-chain $\sigma_{i}(a, b)=(a, a)$ for $i<n$, and $\sigma_{n}(a, b)=(a, a+n)$.

Example: $x_{4} x_{3} x_{1} x_{4} x_{2} x_{1} x_{3} x_{2} x_{4} x_{3} \in C_{4}$.
$(1,2,3,4) \stackrel{x_{3}}{\mapsto}(1,2,3,3) \stackrel{x_{4}}{\mapsto}(7,2,3,3) \stackrel{x_{2}}{\mapsto}(7,2,2,3) \stackrel{x_{3}}{\mapsto}(7,2,2,2) \stackrel{x_{1}}{\mapsto}(7,7,2,2)$

$$
\stackrel{x_{2}}{\mapsto}(7,7,7,2) \stackrel{x_{4}}{\mapsto}(6,7,7,2) \stackrel{x_{1}}{\mapsto}(6,6,7,2) \stackrel{x_{3}}{\mapsto}(6,6,7,7) \stackrel{x_{4}}{\mapsto}(11,6,7,7)
$$

Modulo 4: $(3,2,3,3) ; \quad$ right strands: $2 \rightarrow 2$ and $3 \rightarrow 1$.
Twists: $(1,2,3,4) \mapsto(11,6,7,7)$;
$6=2+1 * 4,11=3+2 * 4$.

Sequences: $6=2+1 * 4,9=1+2 * 4$.

$$
2<3
$$

14/ Answers for C_{n}

Theorem (L. '21): There are explicit bijections between:
(A) the elements of C_{n};
(B) \tilde{n}-webs;
(C) n-close increasing couples of increasing integer sequences.

Corollaries:
2 word problem: a linear solution (A) \rightarrow (C);
3 a quadratic normal form: (A) \rightarrow (C) \rightarrow (B) \rightarrow (A)

$$
\text { or }(A) \rightarrow(C \underset{\text { process }}{\substack{\text { inductive }}}(A) \text {. }
$$

15/ Generalisations?

Problems:

- no diagrammatic interpretation for general graphs;
- for a generically oriented chain, different webs may represent equivalent words.

Example:

relations:

$$
\begin{aligned}
& x_{1}^{2}=x_{1}, x_{2}^{2}=x_{2}, x_{3}^{2}=x_{3}, \quad x_{1} x_{3}=x_{3} x_{1} \\
& x_{1} x_{2} x_{1}=x_{2} x_{1} x_{2}=x_{2} x_{1}, x_{2} x_{3} x_{2}=x_{3} x_{2} x_{3}=x_{2} x_{3}
\end{aligned}
$$

$x_{2} x_{1} x_{3}$

$$
x_{2} x_{1} x_{3} x_{2}=x_{2} x_{1} x_{2} x_{3} x_{2}=x_{2} x_{1} x_{2} x_{3}=x_{2} x_{1} x_{3}
$$

