On left and right nilpotency for skew left braces: a Jodan-Hölder like theorem

Adolfo Ballester-Bolinches Ramon Esteban-Romero Vicent Pérez-Calabuig

Departament de Matemàtiques, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain Adolfo.Ballester@uv.es, Ramon.Esteban@uv.es, Vicent. Perez-Calabuig@uv.es

Algebra Days in Caen 2022: from Yang-Baxter to Garside

March 24-25 2022

Preliminaries and notation

Definition. A skew left brace $(B,+, \cdot)$ is a set B endowed with two group structures $(B,+)$ and (B, \cdot) satisfying the following property:

$$
a \cdot(b+c)=a \cdot b-a+a \cdot c, \quad \text { for every } a, b, c \in B
$$

Throughout this poster B denotes a finite skew left brace
Definition. Let \mathfrak{X} be a class of groups. If $(B,+)$ belongs to \mathfrak{X}, then B is called a skew left brace of \mathfrak{X}-type.

Rump's braces are skew left braces of abelian type.
Notation. The map $\lambda:(B, \cdot) \rightarrow \operatorname{Aut}(B,+)$ denotes the homomorphism $a \mapsto \lambda_{a}$, defined as $\lambda_{a}(b):=-a+a b$, for every $a, b \in B$.
We will consider the star operation $*: B \times B \rightarrow B$, defined as $a * b=\lambda_{a}(b)-b$, for every $a, b \in B$. If X and Y are subsets B,

$$
X * Y:=\langle x * y: x \in X, y \in Y\rangle_{+}
$$

Ideals and series

Definition. A set $\emptyset \neq I$ of B is called a left ideal if I is a Definition. B is said to be left nilpotent if $B^{m}=0$, for subgroup of $(B,+)$ such that $\lambda_{a}(I) \subseteq I$, for all $a \in B$. A some $m \geq 1$. Analogously, B is said to be right nilpotent left ideal I is said to be an ideal if I is normal in $(B,+)$ and \quad if $B^{(m)}=0$, for some $m \geq 1$. $I * B \subseteq I$.

Proposition 1 ([CSV19, Proposition 1.6], [GV17, Lemma 2.5] and). The following hold:

1. $\operatorname{Fix}(B)=\left\{x \in B: \lambda_{a}(x)=x\right.$, for all $\left.a \in B\right\}$ is a is left ideal of B.
2. $\operatorname{Soc}(B)=\left\{x \in B: a+x=x+a \wedge \lambda_{x}(a)=\right.$ a, for all $a \in B\}=\operatorname{ker}(\lambda) \cap Z(B,+)$ is an ideal of B.
Following [Rum07] we define

$$
\begin{array}{ll}
B^{1}=B & B^{(1)}=B \\
B^{n+1}=B * B^{n} & B^{(n+1)}=B^{(n)} * B, \text { for every } n \geq 1
\end{array}
$$

Each B^{i} and $B^{(i)}$ are, respectively, a left ideal and an ideal of B. The series $B^{1} \supseteq \ldots \supseteq B^{n} \supseteq \ldots$ and $B^{(1)} \supseteq \ldots \supseteq B^{(n)} \supseteq \ldots$ are called, respectively, the left and right series of B.

Definition. We say that a sequence of ideals of B

$$
0=I_{0} \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=B
$$

- a chief series if I_{i+1} / I_{i} is a minimal ideal of B / I_{i}, for all $0 \leq i<n$.
- an s-series if $I_{i+1} / I_{i} \subseteq \operatorname{Soc}\left(B / I_{i}\right)$, for all $0 \leq i<$ n.
- an f-series if $I_{i+1} / I_{i} \subseteq \operatorname{Fix}\left(B / I_{i}\right)$, for all $0 \leq i<n$.

Each factor I_{i+1} / I_{i} is called, respectively, a chieffactor, an s-factor or an f-factor.

Definition. We call a sequence of left ideals $0=L_{0} \subseteq$ $L_{1} \subseteq \ldots \subseteq L_{n}=B$ an f-series if, $B * L_{i+1} \subseteq L_{i}$, for all $0 \leq i<n$.

Results

Our first main result is a general version of a Jordan-Hölder theorem for skew left braces:
Theorem 1. For any two chief series of B,

$$
\begin{aligned}
& 0=I_{0} \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=B \\
& 0=J_{0} \subseteq J_{1} \subseteq \ldots \subseteq J_{m}=B
\end{aligned}
$$

it holds that $n=m$ and there exists a permutation $\sigma \in \operatorname{Sym}(n)$ such that I_{i+1} / I_{i} is isomorphic to $J_{\sigma(i+1)} / J_{\sigma(i)}$ and I_{i+1} / I_{i} is an s-factor (f-factor) if, and only if, $J_{\sigma(i+1)} / J_{\sigma(i)}$ is an s-factor (respectively, f-factor).

The proof is based on these two key lemmas. The first one is the analogous one for skew left braces in [FC21]

Lemma 1. Assume that I, J and L are ideals of B with $L \subseteq I$. Then,

$$
\frac{I J}{L J}=\frac{I L J}{L J} \cong \frac{I}{L J \cap I}=\frac{I}{L(J \cap I)}
$$

and the second one is the following
Lemma 2. Let I and J two distinct minimal ideals of B and set $L=I J$. Then,

1. $I \in \operatorname{Soc}(B)$ if, and only if, $L / J \in \operatorname{Soc}(B / J)$
2. $J \in \operatorname{Soc}(B)$ if, and only if, $L / I \in \operatorname{Soc}(B / I)$

Acknowledgements

These results are a part of the $\mathrm{R}+\mathrm{D}+\mathrm{i}$ project supported by the following grants:

Grant PGC2018-095140-B-I00 funded by

References

[CSV19] F. Cedó, A. Smoktunowicz, and L. Vendramin. Skew left braces of nilpotent type. Proc. London Math. Soc., 118(6):13671392, 2019.
[FC21] Neus Fuster Corral. Left braces and the quantum Yang-Baxter equation. PhD thesis, Facultat de Ciències Matemàtiques, Universitat de València, 2021.
[GV17] L. Guarnieri and L. Vendramin. Skew-braces and the Yang-Baxter equation. Math. Comp., 86(307):2519-2534, 2017.
[Rum07] W. Rump. Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra, 307:153-170, 2007.

Grant PROMETEO/2017/057 funded by

