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Yang–Baxter equation (YBE)

σ1σ2σ1 = σ2σ1σ2 : V
⊗3
→ V⊗3 σ1 = σ⊗ IdV , σ2 = IdV ⊗σ

➺ R-matrices in quantum groups (Drinfel ′d 80’);

➺ C∗ algebras (Woronowicz 80’);

➺ twisted tensor product in non-commutative geometry (Majid 90’);

➺ rewriting systems;

➺ braid equation in low-dimensional topology.

σ ←→

YBE ←→ = Reidemeister III
move
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σ1σ2σ1 = σ2σ1σ2 : V
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➺ Find new solutions with properties interesting for different applications.

➺ Classify solutions.

Hard! Solved only for dimV = 2: 96 solutions, up to . . . (Hietarinta ’92).

➺ Understand the structure of the solution “variety”.

The two-step approach (Drinfel ′d 90’):

Step 1. Classify set-theoretic solutions (called braided sets).

Step 2. Study their deformations:

braided sets
linearise deform

linear solutions.

➺ Find solution invariants.
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3 The flip and its deformation

Examples of braided sets:

✓ σ(x, y) = (x, y);

✓ σ(x, y) = (y, x) R-matrices;

✓ σ(x, y) = (y, x) σ(x⊗ y) = y⊗ x+  h1⊗ [x, y],

where (V, [ ]) is a Lie algebra, and ∀v, [1, v] = [v, 1] = 0.

YBE for σ ⇐⇒ Jacobi identity for [ ]
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YBE for σ ⇐⇒ self-distributivity for �

Self-distributivity: (x � y) � z = (x � z) � (y � z)

Examples:

➺ group S with x � y = y−1xy;

z−1(y−1xy)z = (z−1y−1z)(z−1xz)(z−1yz)

➺ abelian group S, t : S→ S, a � b = ta+ (1− t)b.
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Self-distributivity: (x � y) � z = (x � z) � (y � z)

1 Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

a b a � b

b

a

a � b

� b

✓ More generally : abelian group A with a � b = 2b− a.



5 SD: a historical digression

Self-distributivity: (x � y) � z = (x � z) � (y � z)

2 Gavin Wraith, a bored school boy

✓ Abelian group A, t : A→ A, a � b = ta+ (1− t)b.

P Q PQ

1 −t



5 SD: a historical digression

Self-distributivity: (x � y) � z = (x � z) � (y � z)

2 Gavin Wraith, a bored school boy

✓ Abelian group A, t : A→ A, a � b = ta+ (1− t)b.

P Q PQ

1 −t

P Q PQ

PRQR

R

(PQ)R =

(PR)(QR)



5 SD: a historical digression

Self-distributivity: (x � y) � z = (x � z) � (y � z)

2 Gavin Wraith, a bored school boy

✓ Abelian group A, t : A→ A, a � b = ta+ (1− t)b.

P Q PQ

1 −t

P Q PQ

PRQR

R

(PQ)R =

(PR)(QR)

✓ Any group G with g � h = h−1gh, or hg−1h, or . . .
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3 D. Joyce & S. Matveev, knot colorists separated by the Iron Curtain

(S,�)-colourings for
braid diagrams: a
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a
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c

b � c

(a � b) � c
RIII
∼

a

b

c

c

b � c

(a � c) � (b � c)

End(Sn)← B+
n RIII (a � b) � c = (a � c) � (b � c) shelf

Aut(Sn)← Bn & RII ∀b, a 7→ a � b is bijective rack

S →֒ (Sn)Bn & RI a � a = a quandle

a 7→ (a, . . . , a)

β aβa



6 Braids and self-distributivity

S a � b (S,�) is a in braid theory

Z[t±1]Mod ta + (1− t)b quandle (red.) Burau: Bn → GLn(Z[t
±])

group b−1ab quandle Artin: Bn →֒ Aut(Fn)

twisted linear quandle Lawrence–Krammer–Bigelow

Z a+ 1 rack lg(w), lki,j
free shelf Dehornoy: order on Bn
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7 Knots and self-distributivity

(S,�)-colourings for

knot diagrams:

ab

c
y x � y

x y

Proposition: (S,�) is a quandle =⇒

#{ (S,�)-colourings of diagrams } is a knot invariant.

Example: (Z3, a � b = 2b − a)

3 colourings 9 colourings
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7 Knots and self-distributivity

Theorem (Joyce & Matveev ’82):

# ColS,�(D) = #HomQuandle(Q(K), S) = Tr(ρS(β))

➺ Q(K) = fundamental quandle of K

(a weak universal knot invariant);

➺ closure(β) = K;

➺ ρS : Bn → Aut(Sn) is the S-coloring invariant for braids.

closure



8 Other applications of self-distributivity

➺ study of large cardinals (Laver & Dehornoy 90’);

➺ Hopf algebra classification (Andruskiewitsch–Graña ’03);

➺ integration of Leibniz (= generalised Lie) algebras (Kinyon ’07);

➺ study of braided sets.



9 Upper strands ma�er!

Similarly, a braided set (+ extra axioms)

; colouring invariants for braids and knots.

Diagram colorings by (S, σ):
a

b

ba

ab

Notation: σ(a, b) = (ba, a
b).

Example: σSD(a, b) = (b, a � b).
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10 More examples of braided sets

✓ monoid (S, ∗, 1), σ(x, y) = (1, x ∗ y);

YBE for σ ⇐⇒ associativity for ∗

✓ monoid factorization G = HK,

S = H ∪ K, σ(x, y) = (h, k), h ∈ H, k ∈ K, hk = xy;

✓ la�ice (S,
∧
,
∨
), σ(x, y) = (x

∧
y, x

∨
y);

✓ Schensted algorithm on Young tableaux.

All these braidings are idempotent: σσ = σ.
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