Yang-Baxter Equation I

Victoria LEBED, Université Caen Normandie

T-Days III, Caen, October 2019

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3} \quad \sigma_{1}=\sigma \otimes \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \otimes \sigma$

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)

$$
\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: V^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3} \quad \sigma_{1}=\sigma \otimes \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\operatorname{Id}_{\mathrm{V}} \otimes \sigma
$$

\rightarrow factorisation condition for the dispersion matrix in the 1-dim. n-body problem (McGuire \& Yang 60^{\prime});

\rightarrow condition for the partition function in an exactly solvable lattice model (Onsager '44; Baxter 70');

Avatars

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: V^{\otimes 3} \rightarrow V^{\otimes 3} \quad \sigma_{1}=\sigma \otimes I_{V}, \sigma_{2}=I^{2} \mathrm{~V}_{\mathrm{V}} \otimes \sigma$
\rightarrow factorisation condition for the dispersion matrix in the 1-dim. n-body problem (McGuire \& Yang 60^{\prime});

\rightarrow condition for the partition function in an exactly solvable lattice model (Onsager '44; Baxter 70');
\rightarrow quantum inverse scattering method for completely integrable systems (Faddeev et al. '79);
\rightarrow factorisable S-matrices in 2-dim. QFT (Zamolodchikov '79);

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)

$$
\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3} \quad \sigma_{1}=\sigma \otimes \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \otimes \sigma
$$

\rightarrow R-matrices in quantum groups (Drinfel' $d 80^{\prime}$);
\rightarrow C * algebras (Woronowicz 80');
\rightarrow twisted tensor product in non-commutative geometry (Majid 90');
\rightarrow rewriting systems;

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)

$$
\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3} \quad \sigma_{1}=\sigma \otimes \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \otimes \sigma
$$

\rightarrow R-matrices in quantum groups (Drinfel' $d 80^{\prime}$);
\rightarrow C * algebras (Woronowicz 80^{\prime});
\rightarrow twisted tensor product in non-commutative geometry (Majid 90');
\rightarrow rewriting systems;
\rightarrow braid equation in low-dimensional topology.

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3}$

$$
\sigma_{1}=\sigma \otimes I_{V}, \sigma_{2}=\operatorname{Id}_{V} \otimes \sigma
$$

\rightarrow Find new solutions with properties interesting for different applications.

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3} \quad \sigma_{1}=\sigma \otimes \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \otimes \sigma$
\rightarrow Find new solutions with properties interesting for different applications.
\rightarrow Classify solutions.
Hard! Solved only for dim V = 2: 96 solutions, up to ... (Hietarinta '92).

Data: vector space $\mathrm{V}, \sigma: \mathrm{V}^{\otimes 2} \rightarrow \mathrm{~V}^{\otimes 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\otimes 3} \rightarrow \mathrm{~V}^{\otimes 3} \quad \sigma_{1}=\sigma \otimes \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \otimes \sigma$
\rightarrow Find new solutions with properties interesting for different applications.
\rightarrow Classify solutions.
Hard! Solved only for $\operatorname{dim} \mathrm{V}=2$: 96 solutions, up to ... (Hietarinta '92).
\rightarrow Understand the structure of the solution "variety".

Data: set $\mathrm{V}, \sigma: \mathrm{V}^{\times 2} \rightarrow \mathrm{~V}^{\times 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: V^{\times 3} \rightarrow V^{\times 3} \quad \sigma_{1}=\sigma \times \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\operatorname{Id}_{\mathrm{V}} \times \sigma$
\rightarrow Find new solutions with properties interesting for different applications.
\rightarrow Classify solutions.
Hard! Solved only for $\operatorname{dim} \mathrm{V}=2$: 96 solutions, up to ... (Hietarinta '92).
\rightarrow Understand the structure of the solution "variety".
The two-step approach (Drinfel' d 90'):
Step 1. Classify set-theoretic solutions (called braided sets).

Data: set $\mathrm{V}, \sigma: \mathrm{V}^{\times 2} \rightarrow \mathrm{~V}^{\times 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\times 3} \rightarrow \mathrm{~V}^{\times 3} \quad \sigma_{1}=\sigma \times \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \times \sigma$
\rightarrow Find new solutions with properties interesting for different applications.
\rightarrow Classify solutions.
Hard! Solved only for dim V = 2: 96 solutions, up to ... (Hietarinta '92).
\rightarrow Understand the structure of the solution "variety".
The two-step approach (Drinfel' d 90'):
Step 1. Classify set-theoretic solutions (called braided sets).
Step 2. Study their deformations:
braided sets $\sim_{\sim}^{\text {linearise }}$ deform $\sim_{\sim}^{\text {linear solutions. }}$

Data: set $\mathrm{V}, \sigma: \mathrm{V}^{\times 2} \rightarrow \mathrm{~V}^{\times 2}$.
Yang-Baxter equation (YBE)
$\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}: \mathrm{V}^{\times 3} \rightarrow \mathrm{~V}^{\times 3} \quad \sigma_{1}=\sigma \times \mathrm{Id}_{\mathrm{V}}, \sigma_{2}=\mathrm{Id}_{\mathrm{V}} \times \sigma$
\rightarrow Find new solutions with properties interesting for different applications.
\rightarrow Classify solutions.
Hard! Solved only for dim V = 2: 96 solutions, up to ... (Hietarinta '92).
\rightarrow Understand the structure of the solution "variety".
The two-step approach (Drinfel' d 90^{\prime}):
Step 1. Classify set-theoretic solutions (called braided sets).
Step 2. Study their deformations:
braided sets $\sim_{\sim}^{\text {linearise }}$ deform $\sim^{\text {dinear solutions. }}$
\rightarrow Find solution invariants.

Examples of braided sets:
$\boldsymbol{\checkmark} \sigma(x, y)=(x, y) ;$
$\checkmark \sigma(x, y)=(y, x) \leadsto$ R-matrices;

3 The flip and its deformation

Examples of braided sets:
$\checkmark \sigma(x, y)=(x, y) ;$
$\checkmark \sigma(x, y)=(y, x) \sim$ R-matrices;
$\checkmark \sigma(x, y)=(y, x) \leadsto \sigma(x \otimes y)=y \otimes x+\hbar 1 \otimes[x, y]$,
where $(\mathrm{V},[])$ is a Lie algebra, and $\forall v,[1, v]=[v, 1]=0$.
YBE for $\sigma \Longleftrightarrow$ Jacobi identity for []
\checkmark set S , binary operation $\triangleleft, \quad \sigma(x, y)=(y, x \triangleleft y)$

$$
\text { YBE for } \sigma \Longleftrightarrow \text { self-distributivity for } \triangleleft
$$

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$

4. Self-distributivity

\checkmark set S, binary operation $\triangleleft, \quad \sigma(x, y)=(y, x \triangleleft y)$

YBE for $\sigma \Longleftrightarrow$ self-distributivity for \triangleleft

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
Examples:
\rightarrow group S with $x \triangleleft y=y^{-1} x y$;

$$
z^{-1}\left(y^{-1} x y\right) z=\left(z^{-1} y^{-1} z\right)\left(z^{-1} x z\right)\left(z^{-1} y z\right)
$$

4. Self-distributivity

\checkmark set S, binary operation $\triangleleft, \quad \sigma(x, y)=(y, x \triangleleft y)$

YBE for $\sigma \Longleftrightarrow$ self-distributivity for \triangleleft

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
Examples:
\rightarrow group S with $x \triangleleft y=y^{-1} x y$;

$$
z^{-1}\left(y^{-1} x y\right) z=\left(z^{-1} y^{-1} z\right)\left(z^{-1} x z\right)\left(z^{-1} y z\right)
$$

\rightarrow abelian group $\mathrm{S}, \mathrm{t}: \mathrm{S} \rightarrow \mathrm{S}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

SD: a historical digression

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

SD: a historical digression

$$
\text { Self-distributivity: }(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)
$$

(1) Mituhisa Takasaki, a fresh Japanese maths PhD in 1940 Harbin

Motivation: geometric symmetries.

\checkmark More generally : abelian group A with $\mathrm{a} \triangleleft \mathrm{b}=2 \mathrm{~b}-\mathrm{a}$.

5/ SD: a historical digression

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
(2) Gavin Wraith, a bored school boy
\checkmark Abelian group $\mathrm{A}, \mathrm{t}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.

5. SD: a historical digression

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
(2) Gavin Wraith, a bored school boy
\checkmark Abelian group $\mathrm{A}, \mathrm{t}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.

5/ SD: a historical digression

Self-distributivity: $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$
(2) Gavin Wraith, a bored school boy
\checkmark Abelian group $\mathrm{A}, \mathrm{t}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{a} \triangleleft \mathrm{b}=\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$.

\checkmark Any group G with $\mathrm{g} \triangleleft \mathrm{h}=\mathrm{h}^{-1} \mathrm{gh}$, or $\mathrm{hg}^{-1} \mathrm{~h}$, or \ldots
(3) D. Joyce \& S. Matveev, knot colorists separated by the Iron Curtain
(S, \triangleleft)-colourings for braid diagrams:

5. SD: a historical digression

(3) D. Joyce \& S. Matveev, knot colorists separated by the Iron Curtain
(S, \triangleleft)-colourings for braid diagrams:

(3) D. Joyce \& S. Matveev, knot colorists separated by the Iron Curtain
(S, \triangleleft)-colourings for braid diagrams:

$a<b \underset{a}{a}$

6 Braids and self-distributivity

S	$\mathrm{a} \triangleleft \mathrm{b}$	$(\mathrm{S}, \triangleleft)$ is a	in braid theory
$\mathbb{Z}\left[\mathrm{t}^{ \pm 1]}\right.$ Mod	$\mathrm{ta}+(1-\mathrm{t}) \mathrm{b}$	quandle	(red.) Burau: $\mathrm{B}_{\mathrm{n}} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Z}\left[\mathrm{t}^{ \pm}\right]\right)$
group	$\mathrm{b}^{-1} \mathrm{ab}$	quandle	Artin: $\mathrm{B}_{\mathrm{n}} \hookrightarrow$ Aut $\left(\mathrm{F}_{\mathrm{n}}\right)$
twisted linear quandle		Lawrence-Krammer-Bigelow	
\mathbb{Z}	$\mathrm{a}+1$	rack	$\lg (w), l k_{\mathrm{i}, \mathrm{j}}$
free shelf			Dehornoy: order on B_{n}

(S, ব)-colourings for knot diagrams:

7 Knots and self-distributivity

(S, \triangleleft)-colourings for knot diagrams:

Proposition: (S, \triangleleft) is a quandle \Longrightarrow $\#\{(S, \triangleleft)$-colourings of diagrams $\} \quad$ is a knot invariant.

7 Knots and self-distributivity

(S, \triangleleft)-colourings for knot diagrams:

Proposition: (S, \triangleleft) is a quandle \Longrightarrow $\#\{(S, \triangleleft)$-colourings of diagrams $\}$ is a knot invariant.

Example: $\left(\mathbb{Z}_{3}, a \triangleleft b=2 b-a\right)$

(7) Knots and self-distributivity

(S, \triangleleft)-colourings for knot diagrams:

Proposition: (S, \triangleleft) is a quandle \Longrightarrow
$\#\{(S, \triangleleft)$-colourings of diagrams $\}$ is a knot invariant.
Example: $\left(\mathbb{Z}_{3}, a \triangleleft b=2 b-a\right)$

3 colourings

Knots and self-distributivity

Theorem (Joyce \& Matveev '82):

$$
\# \operatorname{Col}_{\mathrm{S}, \triangleleft}(\mathrm{D})=\# \operatorname{Hom}_{\mathrm{Quandle}}(\mathrm{Q}(\mathrm{~K}), \mathrm{S})
$$

$\rightarrow \mathrm{Q}(\mathrm{K})=$ fundamental quandle of K
(a weak universal knot invariant);

Knots and self-distributivity

Theorem (Joyce \& Matveev '82):

$$
\# \operatorname{Col}_{S, \triangleleft}(\mathrm{D})=\# \operatorname{Hom}_{\mathrm{Quandle}}(\mathrm{Q}(\mathrm{~K}), \mathrm{S})=\operatorname{Tr}\left(\rho_{\mathrm{S}}(\beta)\right)
$$

$\rightarrow Q(K)=$ fundamental quandle of K
(a weak universal knot invariant);
$\rightarrow \operatorname{closure}(\beta)=K$;
$\rightarrow \rho_{\mathrm{S}}: \mathrm{B}_{\mathrm{n}} \rightarrow \operatorname{Aut}\left(\mathrm{S}^{\mathrm{n}}\right)$ is the S -coloring invariant for braids.

8 Other applications of self-distributivity

\rightarrow study of large cardinals (Laver \& Dehornoy 90');
\rightarrow Hopf algebra classification (Andruskiewitsch-Graña '03);
\rightarrow integration of Leibniz (= generalised Lie) algebras (Kinyon '07);
\rightarrow study of braided sets.

Similarly, a braided set (+ extra axioms)
\sim colouring invariants for braids and knots.

Diagram colorings by (S, σ) :

Notation: $\sigma(a, b)=\left(b a, a^{b}\right)$.
Example: $\sigma_{S D}(a, b)=(b, a \triangleleft b)$.
$\checkmark \operatorname{monoid}(S, *, 1), \sigma(x, y)=(1, x * y)$;
YBE for $\sigma \Longleftrightarrow$ associativity for $*$

More examples of braided sets

$\checkmark \operatorname{monoid}(S, *, 1), \sigma(x, y)=(1, x * y)$;

```
YBE for }\sigma\Longleftrightarrow\mathrm{ associativity for *
```

\checkmark monoid factorization $\mathrm{G}=\mathrm{HK}$,

$$
S=H \cup K, \quad \sigma(x, y)=(h, k), h \in H, k \in K, h k=x y ;
$$

$\checkmark \operatorname{monoid}(S, *, 1), \sigma(x, y)=(1, x * y)$;

```
YBE for }\sigma\Longleftrightarrow\mathrm{ associativity for *
```

\checkmark monoid factorization $\mathrm{G}=\mathrm{HK}$,

$$
S=H \cup K, \quad \sigma(x, y)=(h, k), h \in H, k \in K, h k=x y ;
$$

\checkmark lattice $(S, \Lambda, \bigvee), \sigma(x, y)=(x \wedge y, x \bigvee y) ;$
$\checkmark \operatorname{monoid}(S, *, 1), \sigma(x, y)=(1, x * y)$;

$$
\text { YBE for } \sigma \Longleftrightarrow \text { associativity for } *
$$

\checkmark monoid factorization $\mathrm{G}=\mathrm{HK}$,

$$
S=H \cup K, \quad \sigma(x, y)=(h, k), h \in H, k \in K, h k=x y ;
$$

\checkmark lattice $(S, \bigwedge, \bigvee), \sigma(x, y)=(x \wedge y, x \bigvee y) ;$
\checkmark Schensted algorithm on Young tableaux.

More examples of braided sets

$\checkmark \operatorname{monoid}(S, *, 1), \sigma(x, y)=(1, x * y)$;

```
YBE for }\sigma\Longleftrightarrow\mathrm{ associativity for *
```

\checkmark monoid factorization $\mathrm{G}=\mathrm{HK}$,

$$
S=H \cup K, \quad \sigma(x, y)=(h, k), h \in H, k \in K, h k=x y ;
$$

\checkmark lattice $(S, \wedge, \bigvee), \sigma(x, y)=(x \wedge y, x \bigvee y) ;$
\checkmark Schensted algorithm on Young tableaux.

All these braidings are idempotent: $\sigma \sigma=\sigma$.

