Yang-Baxter Equation III

Victoria LEBED, Université Caen Normandie

T-Days III, Caen, October 2019

Associative invariants

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.

Associative invariants

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.
Examples:
$\checkmark \operatorname{monoid}(S, *, 1), \quad \sigma(x, y)=(1, x * y)$,

$$
S \simeq \operatorname{Mon}(S, \sigma) / 1_{S}=1_{\text {Mon }}
$$

Associative invariants

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.

Examples:

$\checkmark \operatorname{monoid}(S, *, 1), \quad \sigma(x, y)=(1, x * y)$,

$$
S \simeq \operatorname{Mon}(S, \sigma) / 1_{S}=1_{M o n}
$$

\checkmark Lie algebra $(V,[], 1), \sigma(x \otimes y)=y \otimes x+\hbar 1 \otimes[x, y]$,

$$
\operatorname{UEA}(V,[]) \simeq \mathbb{k} \operatorname{Mon}(S, \sigma) / 1=1_{\text {Mon }}
$$

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.

Examples:

$\checkmark \operatorname{monoid}(S, *, 1), \quad \sigma(x, y)=(1, x * y)$,

$$
S \simeq \operatorname{Mon}(S, \sigma) / 1_{\mathrm{S}}=1_{\mathrm{Mon}}
$$

\checkmark Lie algebra $(V,[], 1), \sigma(x \otimes y)=y \otimes x+\hbar 1 \otimes[x, y]$,

$$
\operatorname{UEA}(\mathrm{V},[]) \simeq \mathbb{k} \operatorname{Mon}(S, \sigma) / 1=1_{\text {Mon }}
$$

$\checkmark \operatorname{shelf}(S, \triangleleft), \quad \sigma(x, y)=(y, x \triangleleft y)$,

$$
\operatorname{Grp}(S, \sigma)=\operatorname{Grp}(S, \triangleleft)
$$

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Representations of $(S, \sigma):=$ representations of $\mathbb{k} \operatorname{Mon}(S, \sigma)$,
i.e. vector spaces M with $M \times S \rightarrow M$ s.t.

Representations

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Representations of $(S, \sigma):=$ representations of $\mathbb{k} \operatorname{Mon}(S, \sigma)$,
i.e. vector spaces M with $M \times S \rightarrow M$ s.t.

Examples:
\rightarrow trivial rep.: $M=\mathbb{k}, m \cdot x=m$;
$\rightarrow M=\mathbb{k} \operatorname{Mon}(S, \sigma), m \cdot x=m x ;$
\rightarrow usual reps for monoids, Lie algebras, self-distributive structures.

Representations

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Representations of $(S, \sigma):=$ representations of $\mathbb{k} \operatorname{Mon}(S, \sigma)$,
i.e. vector spaces M with $M \times S \rightarrow M$ s.t.

Examples:
\rightarrow trivial rep.: $M=\mathbb{k}, m \cdot x=m$;
$\rightarrow M=\mathbb{k} \operatorname{Mon}(S, \sigma), m \cdot x=m x ;$
\rightarrow usual reps for monoids, Lie algebras, self-distributive structures.
Remark: The coefficients for yesterday's cohomology theory are (S, σ)-bimodules in this sense.

Associative invariants: Involutive case

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.

Associative invariants: Involutive case

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.

Theorem: (S, σ) a "nice" finite braided set, $\sigma^{2}=\mathrm{Id} \Longrightarrow$
$\checkmark \operatorname{Mon}(S, \sigma)$ is of I-type, cancellative, Ore;
$\checkmark \operatorname{Grp}(S, \sigma)$ is solvable, Garside, Bieberbach;
$\checkmark \mathbb{k} \operatorname{Mon}(S, \sigma)$ is Koszul, noetherian, Cohen-Macaulay,
Artin-Schelter regular
(Manin, Gateva-Ivanova \& Van den Bergh, Etingof- Schedler-Soloviev, Jespers-Okniński, Chouraqui, Bachiller-Cedó -Vendramin,... 80 ’-...).

Associative invariants: Involutive case

The structure group of a braided set (S, σ) :

$$
\left.\operatorname{Grp}(S, \sigma)=\langle S| x y=y^{\prime} x^{\prime} \text { whenever } \sigma(x, y)=\left(y^{\prime}, x^{\prime}\right)\right\rangle
$$

Structure monoids are defined similarly.
Theorem: (S, σ) a "nice" finite braided set, $\sigma^{2}=\mathrm{Id} \Longrightarrow$
$\checkmark \operatorname{Mon}(S, \sigma)$ is of I-type, cancellative, Ore;
$\checkmark \operatorname{Grp}(S, \sigma)$ is solvable, Garside, Bieberbach;
$\checkmark \mathbb{k} \operatorname{Mon}(S, \sigma)$ is Koszul, noetherian, Cohen-Macaulay,
Artin-Schelter regular;
$\checkmark \operatorname{Grp}(S, \sigma)$ is bi-orderable \Leftrightarrow free abelian $\Leftrightarrow(S, \sigma)$ is trivial;
$\checkmark \operatorname{Grp}(S, \sigma)$ is left-orderable \Leftrightarrow poly- $\mathbb{Z} \Leftrightarrow(S, \sigma)$ is MP.
(Manin, Gateva-Ivanova \& Van den Bergh, Etingof-Schedler-Soloviev, Jespers-Okniński, Chouraqui, Bachiller-Cedó -Vendramin,... 80 ’-...).

Example: $\quad S=\{\mathrm{a}, \mathrm{b}\}, \quad \mathrm{aa} \stackrel{\sigma}{\longleftrightarrow} \mathrm{bb}, \quad \mathrm{ab} \circlearrowleft \sigma, \quad \mathrm{ba} \circlearrowleft \sigma$;
$\operatorname{Grp}(S, \sigma)=\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{a}^{2}=\mathrm{b}^{2}\right\rangle=: \mathrm{G}$.

Example: $\quad S=\{a, b\}, \quad a \mathrm{a} \stackrel{\sigma}{\longleftrightarrow} \mathrm{bb}, \quad \mathrm{ab} \circlearrowleft \sigma, \quad \mathrm{ba} \circlearrowleft \sigma ;$
$\operatorname{Grp}(S, \sigma)=\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{a}^{2}=\mathrm{b}^{2}\right\rangle=: \mathrm{G}$.
Realisation by Euclidean transformations of \mathbb{R}^{2} :

$$
\begin{gathered}
\mathrm{b}=\mathrm{a}^{\prime} \mathrm{ba}^{\prime} \\
\downarrow \mathrm{a}=\mathrm{a}^{\prime} \mathrm{b} \\
\mathrm{a}^{2}=\mathrm{b}^{2}
\end{gathered}
$$

Example: $\quad S=\{a, b\}, \quad a \mathrm{a} \stackrel{\sigma}{\longleftrightarrow} \mathrm{bb}, \quad \mathrm{ab} \circlearrowleft \sigma, \quad \mathrm{ba} \circlearrowleft \sigma$;
$\operatorname{Grp}(S, \sigma)=\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{a}^{2}=\mathrm{b}^{2}\right\rangle=: \mathrm{G}$.
Realisation by Euclidean transformations of \mathbb{R}^{2} :

$$
\begin{gathered}
b=a^{\prime} b a^{\prime} \\
\downarrow \mathrm{a}=\mathrm{a}^{\prime} \mathrm{b} \\
\mathrm{a}^{2}=\mathrm{b}^{2}
\end{gathered}
$$

$\mathbb{R}^{2} / \mathrm{G} \cong$ Klein bottle:

4. Associative invariants: SD case

$$
\operatorname{Grp}(S, \triangleleft)=\langle S \mid x y=y(x \triangleleft y)\rangle
$$

4. Associative invariants: SD case

$$
\operatorname{Grp}(S, \triangleleft)=\langle S \mid x y=y(x \triangleleft y)\rangle
$$

Theorem (L.-Vendramin '19): (S, \triangleleft) a finite rack \Longrightarrow dichotomy for $\mathrm{G}:=\operatorname{Grp}(S, \triangleleft)$:
(1) $\mathrm{G} \simeq \mathbb{Z}^{\mathrm{r}}, \quad \mathrm{r}=\# \operatorname{Orb}(S, \triangleleft)$;
(2) G is non-abelian and has torsion,

4. Associative invariants: SD case

$$
\operatorname{Grp}(S, \triangleleft)=\langle S \mid x y=y(x \triangleleft y)\rangle
$$

Theorem (L.-Vendramin '19): (S, \triangleleft) a finite rack \Longrightarrow dichotomy for $\mathrm{G}:=\operatorname{Grp}(S, \triangleleft)$:
(1) $\mathrm{G} \simeq \mathbb{Z}^{\mathrm{r}}, \quad \mathrm{r}=\# \operatorname{Orb}(S, \triangleleft)$;
(2) G is non-abelian and has torsion, and
G is virtually free abelian:

4. Associative invariants: SD case

$$
\operatorname{Grp}(S, \triangleleft)=\langle S \mid x y=y(x \triangleleft y)\rangle
$$

Theorem (L.-Vendramin '19): (S, \triangleleft) a finite rack \Longrightarrow dichotomy for $\mathrm{G}:=\operatorname{Grp}(S, \triangleleft)$:
(1) $\mathrm{G} \simeq \mathbb{Z}^{\mathrm{r}}, \quad \mathrm{r}=\# \operatorname{Orb}(S, \triangleleft)$;
(2) G is non-abelian and has torsion, and
G is virtually free abelian:

4. Associative invariants: SD case

$$
\operatorname{Grp}(S, \triangleleft)=\langle S \mid x y=y(x \triangleleft y)\rangle
$$

Theorem (L.-Vendramin '19): (S, \triangleleft) a finite rack \Longrightarrow dichotomy for $\mathrm{G}:=\operatorname{Grp}(S, \triangleleft)$:
(1) $G \simeq \mathbb{Z}^{r}, \quad r=\# \operatorname{Orb}(S, \triangleleft)$;
(2) G is non-abelian and has torsion, and
G is virtually free abelian:

Questions:

(1) Characterise such racks?
(2) Better understand such groups?

4. Associative invariants: SD case

(1) Theorem (L.-Mortier '19): Let (S, \triangleleft) be a finite quandle.

$$
\begin{array}{r}
\checkmark \mathrm{G}:=\operatorname{Grp}(\mathrm{S}, \triangleleft) \text { abelian } \Longrightarrow(\mathrm{S}, \triangleleft) \text { abelian: } \\
(x \triangleleft \mathrm{y}) \triangleleft z=(x \triangleleft z) \triangleleft \mathrm{y}
\end{array}
$$

4. Associative invariants: SD case

(1) Theorem (L.-Mortier '19): Let (S, \triangleleft) be a finite quandle.
$\checkmark \mathrm{G}:=\operatorname{Grp}(\mathrm{S}, \triangleleft)$ abelian $\Longrightarrow(\mathrm{S}, \triangleleft)$ abelian:

$$
\begin{gathered}
(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft y \\
\text { for JB: } \Longleftrightarrow x \triangleleft y=x \triangleleft(y \triangleleft z)
\end{gathered}
$$

4. Associative invariants: SD case

(1) Theorem (L.-Mortier '19): Let (S, \triangleleft) be a finite quandle.
$\checkmark \mathrm{G}:=\operatorname{Grp}(\mathrm{S}, \triangleleft)$ abelian $\Longrightarrow(\mathrm{S}, \triangleleft)$ abelian:

$$
\begin{gathered}
(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft y \\
\text { for JB: } \Longleftrightarrow x \triangleleft y=x \triangleleft(y \triangleleft z)
\end{gathered}
$$

$\checkmark(S, \triangleleft)$ abelian \Longrightarrow

4. Associative invariants: SD case

(1) Theorem (L.-Mortier '19): Let (S, \triangleleft) be a finite quandle.

$$
\begin{aligned}
& \checkmark \mathrm{G}:=\operatorname{Grp}(\mathrm{S}, \triangleleft) \text { abelian } \Longrightarrow(\mathrm{S}, \triangleleft) \text { abelian: } \\
& (\mathrm{x} \triangleleft \mathrm{y}) \triangleleft z=(x \triangleleft z) \triangleleft \mathrm{y} \\
& \text { for JB: } \Longleftrightarrow x \triangleleft \mathrm{y}=\mathrm{x} \triangleleft(\mathrm{y} \triangleleft \mathrm{z})
\end{aligned}
$$

$\checkmark(S, \triangleleft)$ abelian \Longrightarrow

$$
0 \longrightarrow \underset{\text { (finite ab.) }}{[\mathrm{G}, \mathrm{G}]} \longrightarrow \mathrm{G} \longrightarrow \mathbb{Z}^{r} \longrightarrow 0,
$$

\checkmark explicit parametrisation of such quandles;
(1) Theorem (L.-Mortier '19): Let (S, \triangleleft) be a finite quandle.

$$
\begin{array}{r}
\checkmark \mathrm{G}:=\operatorname{Grp}(\mathrm{S}, \triangleleft) \text { abelian } \Longrightarrow(\mathrm{S}, \triangleleft) \text { abelian: } \\
(x \triangleleft \mathrm{y}) \triangleleft z=(x \triangleleft z) \triangleleft \mathrm{y} \\
\text { for JB: } \Longleftrightarrow x \triangleleft \mathrm{y}=\mathrm{x} \triangleleft(\mathrm{y} \triangleleft \mathrm{z})
\end{array}
$$

$\checkmark(S, \triangleleft)$ abelian \Longrightarrow

$$
0 \longrightarrow \underset{(\text { finite ab.) }}{[\mathrm{G}, \mathrm{G}]} \longrightarrow \mathrm{G} \longrightarrow \mathbb{Z}^{\mathrm{r}} \longrightarrow 0
$$

\checkmark explicit parametrisation of such quandles;
\checkmark G abelian \Longrightarrow no torsion in $\mathrm{H}^{2}(S, \triangleleft, M)$ (abelian quandles may have torsion).

4 Associative invariants: SD case

A tool: For any finite rack, a map

$$
\prod_{i=1}^{r} \operatorname{Stab}\left(x_{i}, \operatorname{Grp}(S, \triangleleft)\right) \rightarrow \mathrm{H}_{2}(\mathrm{~S}, \triangleleft)
$$

Example: $\left(a, b c^{-1} d\right) \mapsto$

$$
a \xrightarrow{b} a \triangleleft b \stackrel{c}{\longleftrightarrow}(a \triangleleft b) \widetilde{\triangleleft} \xrightarrow{d}((a \triangleleft b) \widetilde{\triangleleft} c) \triangleleft d .
$$

Birack $=$ braided set (S, σ) with $\sigma(a, b)=\left(b_{a}, a^{b}\right)$ s.t.
$\checkmark \sigma$ is invertible;
\checkmark the maps $\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a}^{\mathrm{b}}$ and $\mathrm{a} \mapsto \mathrm{a}_{\mathrm{b}}$ are invertible.

Birack $=$ braided set (S, σ) with $\sigma(a, b)=\left(b_{a}, a^{b}\right)$ s.t.
$\checkmark \sigma$ is invertible;
\checkmark the maps $\forall \mathrm{b}, \mathrm{a} \mapsto \mathrm{a}^{\mathrm{b}}$ and $\mathrm{a} \mapsto \mathrm{a}_{\mathrm{b}}$ are invertible.

Theorem (Soloviev \& Lu-Yan-Zhu '00, L.-Vendramin '17):
\checkmark Birack $(S, \sigma) \sim$ its structure $\operatorname{rack}\left(S, \triangleleft_{\sigma}\right)$:

5/ SD invariants

Proof of the self-distributivity of \triangleleft_{σ} :

Theorem (Soloviev \& Lu-Yan-Zhu '00, L.-Vendramin '17):
\checkmark Birack $(S, \sigma) \quad \sim \quad$ its structure $\operatorname{rack}\left(S, \triangleleft_{\sigma}\right)$:

\checkmark This is a projection Birack \rightarrow Rack along involutive biracks:
$\rightarrow \triangleleft_{\sigma_{\triangleleft}}=\triangleleft ;$
$\rightarrow \triangleleft_{\sigma}$ trivial

$$
\Longleftrightarrow \quad \sigma^{2}=\mathrm{Id}
$$

Theorem (Soloviev \& Lu-Yan-Zhu '00, L.-Vendramin '17):
\checkmark Birack $(S, \sigma) \sim \quad$ its structure $\operatorname{rack}\left(S, \triangleleft_{\sigma}\right)$:

\checkmark This is a projection Birack \rightarrow Rack along involutive biracks:
$\rightarrow \triangleleft_{\sigma_{\triangleleft}}=\triangleleft ;$
$\rightarrow \triangleleft_{\sigma}$ trivial

$$
\Longleftrightarrow \quad \sigma^{2}=\mathrm{Id}
$$

\checkmark The structure rack remembers a lot about the birack:
$\rightarrow\left(\mathrm{S}, \triangleleft_{\sigma}\right)$ quandle $\quad \Longleftrightarrow \quad(\mathrm{S}, \sigma)$ biquandle;

Theorem (Soloviev \& Lu-Yan-Zhu '00, L.-Vendramin '17):
\checkmark Birack $(S, \sigma) \quad \leadsto \quad$ its structure $\operatorname{rack}\left(S, \triangleleft_{\sigma}\right)$:

\checkmark This is a projection Birack \rightarrow Rack along involutive biracks:
$\rightarrow \triangleleft_{\sigma_{\triangleleft}}=\triangleleft ;$
$\rightarrow \triangleleft_{\sigma}$ trivial

$$
\Longleftrightarrow \quad \sigma^{2}=\mathrm{Id}
$$

\checkmark The structure rack remembers a lot about the birack:
$\rightarrow\left(\mathrm{S}, \triangleleft_{\sigma}\right)$ quandle $\quad \Longleftrightarrow \quad(\mathrm{S}, \sigma)$ biquandle;
$\rightarrow \sigma$ and \triangleleft_{σ} induce isomorphic B_{n}-actions on S^{n}
$\Longrightarrow \quad$ same braid and knot invariants.

Theorem (Soloviev \& Lu-Yan-Zhu '00, L.-Vendramin '17):
\checkmark Birack $(S, \sigma) \sim \quad$ its structure $\operatorname{rack}\left(S, \triangleleft_{\sigma}\right)$:

\checkmark This is a projection Birack \rightarrow Rack along involutive biracks:
$\rightarrow \triangleleft_{\sigma_{\triangleleft}}=\triangleleft ;$
$\rightarrow \triangleleft_{\sigma}$ trivial

$$
\Longleftrightarrow \quad \sigma^{2}=\mathrm{Id}
$$

\checkmark The structure rack remembers a lot about the birack:
$\rightarrow\left(S, \triangleleft_{\sigma}\right)$ quandle $\quad \Longleftrightarrow \quad(S, \sigma)$ biquandle;
$\rightarrow \sigma$ and \triangleleft_{σ} induce isomorphic B_{n}-actions on S^{n} \Longrightarrow same braid and knot invariants.

$$
(S, \sigma) \nsubseteq\left(S, \sigma^{\prime}\right) \text { as biracks }!!!
$$

